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Abstract

The course is divided into three chapters of approximately equal length. In the first chapter

we develop the theory of the (real) Itô integral for continuous semimartingales. Then, in the

second chapter we extend this theory into C, where we use it to prove the conformal invariance

and related path properties of complex Brownian motion. Finally, in the third chapter we

investigate the winding and tangling of complex Brownian motion. The course finishes with a

beautiful probabilistic proof of Picard’s (Little) Theorem.





Introduction

Let us introduce the course back to front; beginning with definitions of the two objects that

are central to the latter part of this course, namely analytic functions and complex Brownian

motion.

Firstly, a C valued stochastic process pZtqt¥0 is a complex Brownian motion if it can be

written as

Zt � Xt � iYt (0.1)

where pXtqt¥0 and pYtqt¥0 are independent real Brownian motions.

Secondly, let D be an open subset of C. A function f : D Ñ C is said to be analytic if the

limit

f 1pzq � lim
wÑz

fpwq � fpzq

w � z
(0.2)

exists for all z P D. An analytic function f : C Ñ C is said to be an entire function.

Brownian motion and analytic functions are, independently, remarkable objects. They both

give rise to rich and varied theories of we are able to cover only a small part. At first glance

analytic functions may appear unrelated to Brownian motion, since the former are smooth

objects and latter is decidedly rough. It turns out that there is a surprising connection between

the two, namely the conformal invariance of Brownian motion; the image of a Brownian motion

under an analytic function is a again a Brownian motion, but running at a random speed.

We say that a function f : D Ñ C omits the point z P C if z R fpDq.

Theorem (Picard) A non-constant entire function omits at most a single point.

This course will end with a proof of Picard’s Theorem. What is not obvious is that Picard’s

Theorem has a beautiful proof based on the conformal invariance and path properties of complex

Brownian motion!

Whilst exploring complex Brownian motion we will make use of the full force of Itô integration

with respect to continuous semimartingales. However, we do not assume any prior knowledge

of Itô calculus (although it will naturally help to have some) and we cover this machinery, in R,

right from scratch, as the first part of the course.

The course has been designed to be as accessible as is possible. We assume only a basic

knowledge of complex analysis, to the level of understanding the statements of the major the-

orems. From probability we require that reader is familiar with real Brownian motion and has

some experience of martingales, even if only in discrete time.
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Additional Material

The course comes with six problem sheets of approximately equal length. The difficulty of the

questions varies widely and (deliberately) no indication is offered as to which questions are easy

or hard. No solutions are provided, although some of the problems are standard results that

can be found in books.

The problem sheets are accessible after completing sections from the course according to the

following table.

Sheet 1 Section 1.4

Sheet 2 Section 1.7

Sheet 3 Section 2.2

Sheet 4 Section 2.2

Sheet 5 Section 2.5

Sheet 6 Section 2.5

Conditional on the prerequisites outlined above the course is self contained, although on

some occasions we will choose to only sketch a technical proof. For general reference and further

reading I recommend the following.

• For (real) Itô calculus, the latter chapters of both Ethier and Kurtz (1986) and Volume

II of Rogers and Williams (2000) between them cover a vast amount of material. For

Itô calculus of processes with jumps, see Chapter I of Volume II of Rogers and Williams

(2000). Alternatively, both Chapter III of Ethier and Kurtz (1986) and McKean (1969)

offer compact presentations of Itô calculus.

• For a detailed introduction to martingale theory, see Chapter II of volume I of Rogers and

Williams (2000).

• For Brownian motion (in all dimensions), Mörters and Peres (2010) give a comprehensive

account of the modern theory.

• For material related to Picard’s Theorem and a probabilistic introduction to Nevanlinna

Theory, the reader is directed towards Davis (1979) and the references therein.

• Priestley (2003) provides an introduction to complex analysis. For a comprehensive refer-

ence covering both real and complex analysis there is Rudin (1987)

Much of the course was constructed from the above sources along with my own lecture notes. I

am grateful in all cases for the clear and careful style in which the material was presented.
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Chapter 1

Martingales and Itô Calculus (in R)

In this chapter we develop the theory of Itô calculus. We assume that you have, in some form,

encountered martingales before. However, we are concious you may have only seen special cases

(e.g. discrete time martingales), whereas for later chapters the full force of Itô integration with

respect to continuous semimartingales is needed.

We will typically not concern ourselves with the underlying probability space and associated

regularity issues. For the duration of this course we work over a filtered space pΩ,F , pFtq,Pq
satisfying the ‘usual conditions’ of Rogers and Williams (2000)1. In this chapter we intend all

stopping times, adapted processes and so on to be with respect to pFtq.
Recall that a stochastic process M is said to be square integrable if E

�
|Mt|

2
�
  8 for all

t ¥ 0. If supt¥0 E r|Mt|
ps   8 then we say M is bounded in Lp, where p ¥ 1. Similarly, M is

said to be bounded if there exists (deterministic) C P R such that P r@t ¥ 0, |Mt| ¤ Cs � 1. We

say that a stochastic process is continuous if its paths are continuous; similarly for left and right

continuity.

In this chapter (and only in this chapter) we take all processes to be real valued.

1.1 Martingales

We will make regular use of martingale theory, although we require it only in the special case

of continuous martingales and only in continuous time.

Definition 1.1.1 A stochastic process pMtqt¥0 is a martingale if

1. Mt P Ft for all t ¥ 0,

2. ErMt�s |Fts �Mt for all s, t ¥ 0.

If the first condition holds and the second is replaced by ErMt�s |Fts ¥ Mt then we say M is a

submartingale. Similarly if the first condition holds and the second is replaced by ErMt�s |Fts ¤
Mt then we say M is a supermartingale.

Of course, our canonical example of a martingale is Brownian motion itself.

Lemma 1.1.2 If M is a martingale then both M2 and |M | are submartingales.

1There is no need to worry if you don’t understand what this regularity conditions means. For details see of Rogers and
Williams (2000).
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Proof: This is a consequence of the conditional Jensen inequality; both fpxq � x2 and

fpxq � |x| are convex, so in both cases ErfpMt�sq |Fts ¥ f pE rMt�s |Ftsq � fpMtq. �

We do not have time to explore martingale theory in its own right and instead we collect

together the tools that we need in future chapters. We state them without proof, on the tentative

assumption that you will have seen at least similar results elsewhere. Firstly, two important

martingale inequalities.

Lemma 1.1.3 (Maximal inequality) Let M be a right continuous submartingale. Then for

all x ¡ 0 and T ¡ 0

P
�
sup
t¤T

Mt ¥ x

�
¤

1

x
E
�
M�
T

�
.

Lemma 1.1.4 (Lp inequality) Let M be a right continuous submartingale. Then for all p ¡ 1

and all T ¡ 0,

E
�
sup
t¤T

|Mt|
p

�
¤

�
p

p� 1


p
E r|MT |

ps .

Remark 1.1.5 The assumption of right continuity is mostly not an obstacle, see Theorem

II.67.7 in Rogers and Williams (2000). It will not bother us since in later chapters we need

only continuous martingales.

Secondly, we need the continuous time version of the optional stopping theorem. Recall

that a random variable τ taking values in r0,8s is a stopping time (with respect to pFtq) if

tτ ¤ tu P Ft for all t ¥ 0. Recall also that, if M is a martingale and τ is a stopping time, then

the stopped process t ÞÑM τ
t �Mt^τ is a martingale.

Theorem 1.1.6 (Optional Stopping) Let M be a right continuous martingale and let τ1 ¤ τ2

be stopping times. Then for each t ¡ 0, E rMτ2^t |Fτ1s �Mτ1^t.

If, additionally, tMt^τ2 t ¥ 0u is uniformly integrable, E r|Mτ2 |s   8 and τ2   8 almost

surely then E rMτ2 |Fτ1s �Mτ1.

If M is not a martingale but is only a sub- (resp. super-) martingale then we replace � with

¥ (resp. ¤).

Remark 1.1.7 The conditions for optional stopping in discreet and continuous time are gen-

uinely different; applying the optional stopping in continuous time requires more care.

By far the most useful case of the above theorem is when M or M�^τ is a bounded martingale

and thus the uniform integrability condition is automatic. Let us give an important application

of the optional stopping theorem.

Example 1.1.8 Let pBtq be a Brownian motion with B0 � 0. It is straightforward (see Question

1 on Problem Sheet 1) to show that B2
t � t is a martingale. Let R ¡ 0 and set τR � inftt ¡

0 ; |Bt| ¥ Ru. Note that τR   8 almost surely. Since B is continuous, |BτR | � R so as

E
�
B2
τR

�
� R2. Further, also by continuity of B we have |Bt^τR | ¤ R so we can apply the

optional stopping theorem and deduce that E rτRs � R2.

Thirdly, we will need the martingale convergence theorem.

Theorem 1.1.9 (Martingale Convergence) Let M be a right continuous supermartingale.
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1. Suppose that supt¥0 E
�
M�
t

�
  8. Then there exists a random variable M8 such that

Mt ÑM8 almost surely as tÑ8.

2. Suppose that tMt ; t ¥ 0u is uniformly integrable. Then there exists a random variable M8

such that Mt ÑM8 almost surely and E r|Mt �M8|s Ñ 0.

Once again, the most useful case is will be when M is a bounded martingale. Note that the

first statement holds for any positive (right continuous) supermartingale.

Finally, we need the bracket process.

Theorem 1.1.10 Let M and N be continuous square integrable martingales. Then there is a

unique continuous adapted process xM,Ny with locally finite variation such that xM,Ny0 � 0

and MtNt � xM,Nyt is a martingale.

We will use the standard notation xMy � xM,My. The operator x�, �y does have an explicit

formula, although it is rarely useful in practice:

xM,Nyt � lim
nÑ8

ņ

i�1

pMti�1
�MtiqpNti�1

�Ntiq (1.1)

where D � t0 � t1   . . .   tn � tu and mpDq � max |ti�1 � ti| Ñ 0 as nÑ8. The limit exists

in the sense of Skorodhod convergence in probability on compact intervals. Note in particular

that xMy is an increasing process.

The fact that xM,Ny has locally finite variation (i.e. finite variation over finite time intervals)

means that we can construct Lebesgue-Stieltjes integrals with respect to it! In particular, if

s ÞÑ Fs is a stochastic process then the process» �

0
FsdxMys

is well defined (providing that, s ÞÑ Fs almost surely satisfies appropriate integrability conditions

e.g. if F is bounded).

It is easily seen that x�, �y is bilinear, so as in particular

xM,Ny �
1

4
pxM �Ny � xM �Nyq . (1.2)

We have already remarked that B2
t � t is a martingale, where pBtq is Brownian motion. It

follows from Theorem 1.1.10 that Brownian motion has bracket process xByt � t. In Question

1 of Problem Sheet 2 we calculate xBy using (1.1), giving an alternative proof that xByt � t.

If M and N are independent martingales (with the same filtration) then it is easily seen that

MN is also a martingale and, consequently, in this case xM,Ny � 0. The converse does not

hold in general.

1.2 Itô Calculus I

In this section we establish our first version of the Itô integral. The class of processes that we

will use as integrators is

M2
0 �

"
M ; pMtq

8
t�0 is a continuous martingale, M0 � 0 and sup

t
E
�
M2
t

�
  8

*
, (1.3)
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the space of L2 bounded martingales. Given some M PM2
0, the set of processes that we will be

able to integrate against M is

L2pMq �

"
F ; pFtq

8
t�0 is progressively measurable and E

�» 8

0
F 2
s dxMys

�
  8

*
. (1.4)

If s ÞÑ Fs is both adapted and right (or left) continuous then s ÞÑ Fs is progressively measurable.

This will hold for all processes considered in Chapters 2 and 3.

The linear spaces M2
0 and L2pMq are both Hilbert spaces with norms given by

||M ||M2
0
� sup

t
E
�
M2
t

�
, ||F ||L2pMq �

» 8

0
E
�
F 2
s

�
dxMys

respectively.

A set D � ptiq
n
i�0 is said to be a partition if 0 � t0   t1   . . .   tn   8. An adapted

process pFtq
8
t�0 is said to be a simple process if it is a bounded process of the form

Ft �
¸
i

ai1tt P rti, ti�1qu (1.5)

where D � ptiq
n
0 is a partition and, for each i, ai is a bounded Fti measurable random variable

(note that this makes F previsible). Let L0 denote the set of simple processes and note that

L0 � L2pMq for any M PM2
0. In fact, more is true.

Lemma 1.2.1 Let M PM2
0. Then L0 is a dense subset of L2pMq.

Proof: We omit the proof (which is best done via a monotone class argument). �

For a simple process F P L0, as in (1.5), we can define explicitly what their Itô integral is:

the process pIpF qtq
8
t�0 where

IpF qt �
¸
i

Fti
�
Mt^ti�1

�Mt^ti

�
. (1.6)

Note that the process value Fti associated to the increment Mti�1
�Mti is taken from time ti,

at the start of the interval rti, ti�1q. This is crucial in what follows, in particular for Lemmas

1.2.4 and 1.2.5.

Remark 1.2.2 Replacing Fti with, for example, Fti�1
in (1.6) results in different integral. The

most common example of such a modification is known as the Stratonovich integral, in which

one takes Frti where rti � ti�1�ti
2 . In this course we focus only on the Itô integral (1.6).

Our construction of the Itô integral will rely on the following abstract theorem.

Theorem 1.2.3 Let X be a metric space and let Y be a complete metric space. Let A be a

dense subset of X and suppose that f : AÑ Y is uniformly continuous. Then there is a unique

continuous map f : X Ñ Y such that f � f on A.

We seek to apply the above theorem with A � L0, X � L2pMq and Y �M2
0. The map f

will be the map F ÞÑ IpF q and its closure f is our definition of the Itô integral. This leaves us

with some work to do. Namely, we must show that IpF q PM2
0 for all F P L0 and that the map

F ÞÑ IpF q is uniformly continuous on L0. We will now approach these two points.
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Lemma 1.2.4 Let M PM2
0. For each F P L0, IpF q is a martingale.

Proof: Note that it follows trivially from (1.6) that IpF q is a continuous square integrable

(in fact, bounded) martingale. We note that for s ¤ t,

E rIpF qt |Fss � E

�¸
j

Ftj pMtj�1
�Mtj q

���Fs
�

�
¸
i

E
�
FtjE

�
Mtj�1

�Mti |Ftj
�
|Fs

�
� 0

since M is a martingale. Note that here we abuse notation slightly and sum over the partition

ptjq � ts, ti�1, . . . , ti1 , tu where s P pti, ti�1s and t P pti1 , ti1�1s. �

Lemma 1.2.5 Let M PM2
0. For each F P L0 the process IpF q2t �

³t
0 F

2
s dxMys is a martingale.

Hence, the bracket process of IpF q is
³�
0 FsdxMys.

Proof: Let s   t. In similar style to the proof of Lemma 1.2.4, over the same indices but with

two (identical) partitions ptjq and ptkq, we note that

E

�
IpF q2t � IpF q2s �

» t
s
F 2
udxMyu

����Fs
�

� E

��
IpF qt � IpF qs

�2
�

» t
s
F 2
udxMyu

����Fs
�

� E

�¸
k

¸
j

FtkFtj pMtk�1
�MtkqpMtj�1

�Mtj q �
¸
k

F 2
tkpxMytk�1

� xMytkq

����Fs
�

If we condition the summands in the first sum above on Ftk^tj they vanish unless k � j (as in

the proof of Lemma 1.2.4 because M is a martingale). We thus obtain that the above is equal

to

E

�
F 2
tk E

�¸
k

pMtk�1
�Mtkq

2 � pxMytk�1
� xMytkq

����Ftk
� ����Fs

�
.

Noting that M is a square integrable martingale, from Theorem 1.1 the above is zero. �

Lemma 1.2.5 implies something even better than uniform continuity of F ÞÑ IpF q. The

martingale property implies that E
�
IpF q2t

�
� E

�³t
0 F

2
s dxMys

�
and, since this is an increasing

function of t we have that » 8

0
E
�
F 2
s

�
dxMys � sup

t
E
�
IpF q2t

�
. (1.7)

Therefore, IpF q PM2
0 and the map F ÞÑ IpF q is an isometry. Coupled with Lemma 1.2.4 we

are now in a position to apply Theorem 1.2.3.

Definition 1.2.6 Let M PM2
0. The closure in pL2pMq,M2

0q of the map F ÞÑ IpF q defines a

map

F� ÞÑ

» �

0
FsdMs

known as the Itô integral with respect to M .
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Remark 1.2.7 Alert readers will have spotted that L2 and M2
0 are really only Hilbert spaces

after we quotient them by indistinguishability. This is no problem; Itô integrals are, like many

other objects, only defined up to indistinguishability. We will usually not trouble ourselves to

write ‘almost surely’ when it is needed only for this reason. We will also not trouble ourselves

with the associated technicalities, save for remarking that if F or M is evanescent then
³�
0 FsdMs

is also evanescent.

Remark 1.2.8 Definition (1.2.6) is the preferred ‘modern’ definition of the Itô integral, because

it provides the best starting point for stochastic calculus. It is equally possible (and arguably

more elegant) to define the same object implicitly using Hilbert space methods, see Section IV.28

in Rogers and Williams (2000).

We will need integrals of the form
³t
s FudMu and, in analogy with the finite variational theory,

we define » t
s
FudM �

» t
0
FudMu �

» s
0
FudMu. (1.8)

It is easily seen that the same process t ÞÑ
³t
s FudMu is obtained from using the same construction

as above but replacing time 0 by time s ¥ 0. We will use this fact in what follows without

comment, although for simplicity we will usually state our results for the Itô integral as a

process over r0,8q.

One well known property of the Itô integral that comes for free with our construction is the

following.

Theorem 1.2.9 (Itô isometry) Let M PM2
0. For all F P L2pMq and all t,

E

��» t
0
FsdMs


2
�
�

» t
0
E
�
F 2
s

�
dxMys.

Proof: We saw in (1.7) that the relation ||IpFtq||M2
0
� ||F ||L2pMq holds on the dense subset

L0 of L2pMq. By continuity of the Itô integral it holds on L2pMq. �

1.3 Properties of the Itô Integral I

In some ways the Itô integral behaves like the ‘usual’ Lebesgue-Stieltjes integral, but in other

ways it does not. As usual, the easiest property to see is linearity, which we prove in the following

lemma and will subsequently use without comment.

Lemma 1.3.1 Let M PM2
0 and F,G P L2pMq, α P R. Then» �

0
Fs � αGs dMs �

» �

0
FsdMs � α

» �

0
GsdMs.

Proof: Let α P R, F,G P L2pMq and (by Lemma 1.2.1 let F pnq and Gpnq be sequences of

simple processes such that F pnq Ñ F and Gpnq Ñ G in L2pMq. It is easily seen from (1.6) that

IpF pnqq � αIpGpnqq � IpF pnq � αGpnqq. (1.9)

Since L2pMq is a linear space we have αGpnq Ñ αG, F pnq �αGpnq Ñ F �αG in L2pMq. Since

the Itô integral is continuous, IpF pnqq Ñ IpF q, αIpGpnqq Ñ αIpGq and IpF pnq � αGpnqq Ñ

IpF � αGq in M2
0. Taking limits in (1.9) gives the result. �
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Remark 1.3.2 Of course, the above proof works in greater generality; a continuous extension

of a densely defined continuous linear operator is necessarily linear.

For now we only need to deduce one further property of the Itô integral (and we will return

to looking at other properties in Section 1.6). In particular, note that both Theorem 1.2.9 and

Lemma 1.2.5 suggest that the bracket process of
³�
0 FsdMs is

³�
0 F

2
s dxMys, which is correct, but

it will take us the rest of this section to prove it.

There is a standard technique for deducing basic properties of the Itô integral that is not

dissimilar to its equivalents for Lebesgue-Stieltjes integrals and conditional expectations. Es-

sentially, the program is the following:

1. Deduce that the desired property holds for simple processes.

2. Use Lemma 1.2.1 and a limit theorem (e.g. Theorem 1.3.3 below and/or dominated con-

vergence) to carry the property onto the Itô integral of Definition 1.2.6.

The details are different in each case and often specific bounds or identities are require to justify

the limit taking.

Theorem 1.3.3 Let M P M2
0 and F P L2pMq and suppose pF pnqq � L2pMq is such that

F pnq Ñ F . Then there exists a subsequence pF pinqq of pF pnqq such that for each T ¡ 0,

sup
tPr0,T s

����» t
0
F pinqsdMs �

» t
0
FsdMs

����Ñ 0 (1.10)

almost surely and in L2pPq.

Proof: We have E
�³8

0 pF pnqs � Fsq
2dxMys

�
Ñ 0 as n Ñ 8. By passing to a subsequence

(which we do not notate) we may assume that

¸
n

E
�» 8

0
pF pnqs � Fsq

2dxMys

�1{2

  8. (1.11)

For each T ¡ 0, using that norms in L1pPq are controlled by norms in L2pPq, followed by

Lemma 1.1.4 and Theorem 1.2.9 we have

E

�¸
n

sup
tPr0,T s

����» t
0
F pnqsdMs �

» t
0
FsdMs

����
�

¤
¸
n

E

�
sup
tPr0,T s

����» t
0
F pnqs � Fs dMs

����2
�1{2

¤
¸
n

2E

�����» T
0
F pnqs � F pnqs dMs

����2
�1{2

� 2
¸
n

E
�» T

0
pF pnqs � Fsq

2dxMys

�1{2

.

By (1.11) the above is finite almost surely. In particular,¸
n

sup
tPr0,T s

����» t
0
F pnqsdMs �

» t
0
FsdMs

����   8
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almost surely, which implies that almost sure convergence holds for (1.10). Further, for each

T ¡ 0, using Lemma 1.1.4 and Theorem 1.2.9 we have

E

�
sup
tPr0,T s

����» t
0
F pnqsdMs �

» t
0
FsdMs

����2
�

¤ 4E

�����» T
0
F pnqs � Fs dMs

����2
�

� 4E
�» T

0
pF pnqs � Fsq

2dxMys

�
which tends to zero as nÑ8. Hence L2pPq convergence holds for (1.10). �

Lemma 1.3.4 (Kunita-Watanabe Inequality) Let M,N PM2
0 and F P L2pMq, G P L2pNq.

Then » t
s
|FuGu| |dxM,Nyu| ¤

�» t
s
F 2
udxMyu


1{2�» t
0
G2
udxNyu


1{2

and

E
�» t

s
|FuGu| |dxM,Nyu|

�
¤ E

��» t
s
F 2
udxMyu


�1{2

E
��» t

0
G2
udxNyu


�1{2

.

Remark 1.3.5 This is a statement about finite variational integrals.

Proof: Let us prove the first inequality. First note that the measures |dxM,Ny| and dxM,Ny

are mutually absolutely continuous (as measures on Ω � p0,8q) so there exists a measurable

function pω, sq ÞÑ σspωq P t�1,�1u such that |dxM,Nys| � σsdxM,Nys. Replacing Fs with

FsσssgnpFsGsq we see that, without loss of generality, it suffices to prove the lemma in the case

where FG ¥ 0 and xM,Ny ¥ 0.

Since the bracket process is bilinear,

0 ¤ xM � αNy � xMy � 2αxM,Ny � α2xNy (1.12)

for any α P R. It follows from (1.12) that for any bounded interval I � r0,8q and α P R,» t
s
1tu P IudxMyu � α2

» t
s
1tu P IudxNyu ¥ 2α

» t
s
1tu P IudxM,Nyu. (1.13)

Setting α �
� ³t

s
1tuPIudxMyu³t

s
1tuPIudxNyu

	1{2

we have

» t
s
1tu P IudxM,Nyu ¤

�» t
s
1tu P IudxMyu


1{2�» t
s
1tu P IudxNyu


1{2

.

Therefore, the stated result holds for simple functions (i.e. linear sums of indicator functions

of bounded intervals). The usual procedure for finite variational integrals upgrades this to any

F P L2pMq and G P L2pNq.

To prove the second inequality, simply take expectations in (1.13) and proceed as above. �

Lemma 1.3.6 Let M,N PM2
0 and let F P L2pMq, G P L2pNq. Then for all tB» �

0
FsdMs,

» �

0
GsdNs

F
t

�

» t
0
FsGsdxM,Nys.
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Proof: First, let F,G P L0. In particular, without loss of generality assume F and G have

the same partition ptiq (with t0   t1   . . .) so as

Fs �
ķ

i�1

Fti1ts P rti, ti�1qu, Gs �
ķ

i�1

Gti1ts P rti, ti�1qu.

Then (in similar style to the proof of Lemma 1.2.5),

E
��» t

s
FudMu


�» t
s
GudNu



�

» t
s
FuGudxM,Nyu

���Fs�
� E

�¸
i

¸
j

FtiGtj pMti�1
�MtiqpNtj�1

�Ntj q �
¸
i

FtiGtipxM,Nyti�1
� xM,Nyti

���Fs
�

� 0.

In the above equation, with slight abuse of notation, the sums over i are over the partition

ts, ti, . . . , ti1 , tu (where s P pti, ti�1s and t P pti1 , ti1�1s) and similarly for j. The final line of the

above follows since

E
�
FtiGtj pMti�1

�MtiqpNtj�1
�Ntj q

��Fti^tj�
is zero unless i � j, in which case

E
�
FtiGtipMti�1

�MtiqpNti�1
�Ntiq � FtiGtipxM,Nyti�1

� xM,Nytiq | Fti
�

� FtiGtiE
�
pMti�1

�MtiqpNti�1
�Ntiq � pxM,Nyti�1

� xM,Nytiq | Fti
�

� FtiGtiE
�
Mti�1

Nti�1
�MtiNti � pxM,Nyti�1

� xM,Nytiq | Fti
�

� 0.

We have thus proved the result for the case F,G P L0.

Now let F P L2pMq and G P L2pNq and by Theorem 1.3.3 let pF pnqq and pGpnqq be sequences

of simple processes such that F pnq Ñ F in L2pMq, Gpnq Ñ G in L2pNq and (1.10) holds. From

above, for each n we have

E
��» t

s
F pnqudMu


�» t
s
GpnqudNu



�

» t
s
F pnquGpnqudxM,Nyu

���Fs� � 0. (1.14)

We will take the limit of the two terms in the above equation in turn, starting with the leftmost.

Using the conditional Jensen inequality followed by the Cauchy-Schwarz inequality,

E
�����E ��» t

s
FudMu


�» t
s
Gu �Gpnqu dNs


 ���Fs������
¤ E

�
E
������» t

s
FudMu


�» t
s
Gu �Gpnqu dNs


���� ���Fs��
� E

������» t
s
FudMu


�» t
s
Gu �Gpnqu dNs


�����

¤ E

��» t
s
FudMu


2
�1{2

E

��» t
s
Gu �Gpnqu dNu


2
�1{2

The above equation tends to zero since, by (1.3.3) (in L2pPq), the second term on the right hand

side tends to zero as nÑ8. Hence

E
��» t

s
FudMu


�» t
s
Gu �Gpnqu dNs


 ���Fs�Ñ 0 (1.15)

16



in L1pPq as nÑ8. By passing to a subsequence (which we do not notate) we can assume that

in fact the convergence in (1.15) is almost sure.

Similarly, we have

E
�����E ��» t

s
Fu � F pnqu dMu


�» t
s
Gpnqu dNs


 ���Fs������

¤ E

��» t
s
F pnqu � Fu dMu


2
�1{2

E

��» t
s
Gpnqu dNu


2
�1{2

(1.16)

By (1.3.3) again, the first term on the right hand side of the above tends to zero as n Ñ 8.

Further, by Theorem 1.2.9 and the fact that Gpnq Ñ G in L2pNq we have

sup
n

E

��» t
s
GpnqudNu


2
�
� sup

n
E
�» t

s
Gpnq2sdxNys

�
  8. (1.17)

Hence also (1.16) tends to zero as nÑ8. We thus have

E
��» t

s
Fu � F pnqu dMu


�» t
s
Gpnqu dNs


 ���Fs�Ñ 0 (1.18)

in L1pPq as n Ñ 8. By passing to a further subsequence (which, again, we do not notate) we

have that the convergence in (1.18) holds almost surely.

Summing (1.15) and (1.18) we obtain

E
��» t

s
FudMu


�» t
s
GudNu



�

�» t
s
F pnqu


�» t
s
GpnqudNu


 ���Fs�Ñ 0. (1.19)

almost surely as nÑ8.

We now move on to the second term of (1.14). Using the conditional Jensen inequality

followed by the second part of Lemma 1.3.4 we have

E
�����E �» t

s
FupGu �GpnquqdxM,Nyu

���Fs������
¤ E

�
E
�����» t

s
FupGu �GpnquqdxM,Nyu

���� ���Fs��
� E

�����» t
s
FupGu �GpnquqdxM,Nyu

�����
¤ E

�» t
s
|FupGu �Gpnquq| |dxM,Nyu|

�

¤ E

��» t
s
F 2
udxMyu


2
�1{2

E

��» t
s
pGu �Gpnquq

2dxNyu


2
�1{2

.

The above equation tends to zero, because the second term on the right hand side of the above

tends to zero (since Gpnq Ñ G in L2pNq). Hence,

E
�» t

s
FupGu �GpnquqdxM,Nyu

���Fs�Ñ 0 (1.20)

in L1pPq as nÑ8. By passing to a third subsequence (which, yet again, we do not notate) we

can assume the convergence in (1.20) is almost sure.
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Similarly,

E
�����E �» t

s
pFu � F pnquqGpnqudxM,Nyu

������

¤ E

��» t
s
pFu � F pnquq

2dxMyu


2
�1{2

E

��» t
s
Gpnq2udxNyu


2
�1{2

. (1.21)

The above equation tends to zero, because the first time on the right hand side tends to zero

(since F pnq Ñ F in L2pMq) and the second term on the right hand side is bounded as in (1.17).

Hence

E
�» t

s
pFu � F pnquqGpnqudxM,Nyu

�
Ñ 0 (1.22)

in L1pPq as nÑ8 and by passing to a fourth subsequence (which, yet again, we do not notate)

we have that the convergence in (1.22) holds almost surely.

Combining (1.20) and (1.22) we have

E
�» t

s
F pnquGpnqudxM,Nyu

���Fs � » t
s
FuGudxM,Nyu

���Fs�Ñ 0. (1.23)

Putting (1.19) and (1.23) into (1.14) we obtain

E
��» t

s
FudMu


�» t
s
GudNu



�

» t
s
FuGudxM,Nyu

���Fs� � 0.

This completes the proof. �

1.4 Local Martingales

In this section we introduce a natural generalization of martingales, known as local martingales.

Definition 1.4.1 A real valued stochastic process pMtqt¥0 is a local martingale if there exists

an increasing sequence pTnqnPN of finite stopping times such that

1. Tn Ñ8 almost surely as nÑ8.

2. t ÞÑMt^Tn
is a martingale (with respect to the same filtration as M) for all n.

The sequence pTnq is known as the localizing sequence of M .

Questions 4 and 5 on Problem Sheet 1 give examples of processes which are local martingale

but not local martingales. Local martingales are typically not martingales, whereas martingales

are always local martingales (for example, choose Tn � n). The most useful way to show that a

local martingale is a martingale is the following lemma.

Lemma 1.4.2 If M is a bounded local martingale then M is a martingale.

Proof: The fact that Tn Ñ8 almost surely implies that Mt^Tn
ÑMt as nÑ8. Since M is

bounded we have, for all t ¥ 0,

E
�
sup
n
|Mt^Tn

|

�
  8 (1.24)
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and thus the conditional dominated convergence theorem implies that also E rMt^Tn
|Fts Ñ

E rMt |Fts almost surely. The result follows by taking an (almost sure) limit as n Ñ 8 of

E
�
Mpt�sq^Tn

|Ft
�
�Mt^Tn

. �

Of course, the above proof implies that in fact (1.24) is enough to show that a local martingale

is really a martingale. This apparent improvement on Lemma 1.4.2 is of no use to us; the reason

(which appears below as Lemma 1.4.4) is that typically a local martingale M has localizing

sequence Tn � inftt ¥ 0 ; |Mptq| ¥ nu ^ n. The following lemma, in the same spirit, can also

sometimes be helpful.

Lemma 1.4.3 Let M be a non-negative local martingale. Then M is a supermartingale.

Proof: Let pTnq be a localizing sequence for M . Apply the conditional Fatou lemma to the

left hand side of E rMt^Tn
|Fss �Ms^Tn

as nÑ8. �

A local martingale can possess many good qualities without being a martingale. For ex-

ample, in Question 1 of Problem Sheet 5 we exhibit a process that is a local martingale, a

supermartingale, uniformly integrable and even bounded in L2, but which is not a martingale.

Local martingales will become very important to us; a large natural class of local martingales

will appear as a consequence of Itô’s formula.

Lemma 1.4.4 Let M be a continuous local martingale with M0 � 0. Then there exists a local-

izing sequence of stopping times pTnq for M such that for each n, MTn is a bounded martingale

and Tn ¤ n.

Proof: Let pTnq be a localizing sequence for M and let Sn � inftt ¥ 0 ; |Mt| � nu ^ n. Since

M is continuous and M0 � 0, Sn Ò 8 almost surely as n Ñ 8, and hence τn � Sn ^ Tn is a

localizing sequence for M , with the additional property that M�^τn ¤ n and τn ¤ n. �

For local martingales, there are (as far as I know) no generalizations of the maximal inequality,

Lp inequality, optional stopping theorem or martingale convergence theorem. It is often possible

to treat a local martingale M as though it was a martingale, by applying ‘martingale’ results to

M�^Tn
and then letting nÑ8. We will see several examples of this in future sections.

Two of the results from Section 1.1 do have direct local martingale equivalents. Firstly,

it is easily seen that if τ   8 is a stopping time and M is a local martingale then M�^τ is

a local martingale. Secondly, the bracket process has a natural extension to continuous local

martingales, which we now describe.

Theorem 1.4.5 Let M,N be continuous local martingales. Then there exists a unique continu-

ous adapted process xM,Ny with locally finite variation such that xM,Ny0 � 0 and MN�xM,Ny

is a local martingale.

Proof: Let τn be a localizing sequence for M and note that by Lemma 1.4.4 we may assume

M τn is bounded for each n and τn ¤ n. Therefore, by Theorem 1.1.10 the bracket process of

M�^τn exists; M2
t^τn � xM�^τnyt is a martingale. By stopping this process at τn�1 we see that

M2
t^τn�1

� xM�^τnyt^τn�1
is also a martingale. Therefore the uniqueness part of Theorem 1.1.10

implies that

xM�^τnyt � xM�^τn�1
yt for all t ¤ τn�1.
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As a result, we may define for all t P r0,8q,

xMyt � xM�^τnyt (1.25)

pathwise where n is chosen such that t ¤ τn. With this definition,

M2
t � xMyt

is a local martingale with localizing sequence pτnq.

Through (1.2) we can define xM,Ny for pairs of local martingales M,N . Using bilinearity

and applying the above results for M � N and M � N we can then show that MN � xM,Ny

is a local martingale. With a little work it can be shown that the various properties claimed of

xM,Ny are inherited from Theorem 1.1.10 via (1.25); we omit these details. �

It is easily seen that our extension of x�, �y preserves the bilinearity and also satisfies (1.2).

This is useful to us because it means that properties of xM,Ny can usually be deduced from the

equivalent property for xMy.

We now prepare ourselves to define Itô integrals with respect to local martingales. Crucially,

we need to establish the relationship between an Itô integral stopped at time τ and an Itô

integral with respect a martingale stopped a time τ .

Lemma 1.4.6 Let M,N be local martingales and T   8 be a stopping time. Then xMT y� �

xMy�^T and xMT ,My�^T � xMy�^T .

Proof: For the first statement, note that MT
t �Mt^T and apply Theorem 1.4.5 to both MT

and M . The second statement is similar. �

Lemma 1.4.7 Let M PM2
0 and F P L2pMq. Let τ   8 be a stopping time. Then» �^τ

0
FsdMs �

» �

0
FsdM

τ
s .

Proof: Note that the corresponding result holds for finite variational integrals. That is,» �

0
F 2
s dxMys^τ �

» �^τ

0
F 2
s dxMys. (1.26)

By the Itô isometry (Theorem 1.2.9), followed by Lemma 1.4.6 and (1.26) we have

E

��» t
0
FsdM

τ
s


2
�
� E

�» t
0
F 2
s dxM

τ ys

�
� E

�» t^τ
0

F 2
s dxMys^τ

�
� E

�» t^τ
0

F 2
s dxMys

�
and by the Itô isometry again,

E

��» t^τ
0

FsdMs


2
�
� E

�» t^τ
0

F 2
s dxMys

�
.
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Using the Optional Stopping Theorem (at time t^ τ), followed by with Lemmas 1.3.6, 1.4.6 and

finally (1.26) we have

E
��» t

0
FsdM

τ
s


�» t^τ
0

FsdMs


�
� E

��» t^τ
0

FsdM
τ
s


�» t^τ
0

FsdMs


�
� E

�» t^τ
0

F 2
s dxM

τ ,Mys

�
� E

�» t^τ
0

F 2
s dxMys^τ

�
� E

�» t^τ
0

F 2
s dxMys

�
.

We can therefore conclude that

E

��» t
0
FsdM

τ
s �

» t^τ
0

FsdMs


2
�
� 0.

Hence,
³t
0 FsdM

τ
s and

³t^τ
0 FsdMs are almost surely equal for a dense countable subset of t and,

by continuity, almost surely equal as processes. �

1.5 Itô Calculus II

We seek to extend the definition of the Itô integral, in the same style as our extension of the

bracket process in Theorem 1.4.5.

Recall the spaces M2
0 and L2pMq. Let

M0,loc � tM ; pMtq
8
t�0 is a continuous local martingale and M0 � 0u

and let

L2
locpMq �

"
F ; pFtq

8
t�0 is progressively measurable and

» 8

0
F 2
s dxMys   8

*
.

Let M PM0,loc with localizing sequence pTnq and recall that by Lemma 1.4.4 we can choose Tn
such that MTn PM2

0. Let F P L2
locpMq. Define

Sn � inf

"
t ¥ 0 ;

����» t
0
F 2
s dxMys

���� ¥ n

*
and note that Sn Ò 8. Hence

τn � Tn ^ Sn ^ n (1.27)

is a localizing sequence for M . Further,» t
0
F 2
s dxM

τnys �

» t^τn
0

F 2
s dxMys (1.28)

so also F� P L2pM τnq. The results of Section 1.2 will now allow us to define the process
³�
0 FsdM

τn
s

pathwise. By Lemma 1.4.7 for t ¤ τn we have» t
0
FsdM

τn�1
s �

» t^τn
0

FsdM
τn�1 �

» t
0
FsdM

τn�1^τn
s �

» t
0
FsdM

τn
s �

» t^τn
0

FsdM
τn
s �

» t
0
FsdM

τn .
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Thus we can define the Itô integral of F with respect to M by» t
0
FsdMs �

» t
0
FsdM

τn
s (1.29)

where n is such that t ¤ τn. It is easily seen that this definition does not depend on the sequence

pTnq used to localize M .

Definition 1.5.1 A stochastic process pXtqt¥0 is a continuous semimartingale if it can be writ-

ten

Xt � X0 �Mt �At

where X0 is F0 measurable, M is a continuous local martingale with M0 � 0 and At is a

continuous adapted process with paths of locally finite variation with A0 � 0. The processes M

and A are known respectively as the martingale and finite variational parts of X.

Definition 1.5.2 Let X � M � A be a semimartingale with martingale part M PM0,loc and

finite variational part A. Let F P L2
locpMq. The Itô integral of F with respect to X is the

process » �

0
FsdXs �

» �

0
FsdMs �

» �

0
FsdAs

where, on the right hand side, the first term is defined by (1.29) and the second term is defined

(pathwise) as a Lebesgue-Stieltjes integral.

Definition 1.5.2 gives the most general form of the Itô integral for continuous stochastic

processes. This is even a theorem! See Section IV.16 and Remark IV.34.14 of Rogers and

Williams (2000) for details. We use (1.8) to extend Definition 1.5.2 and define
³t
s FudXs � u.

As with ordinary differential equations, it is common to drop the integral sign when making

implicit definitions of stochastic processes in terms of Itô integrals. When this is done it known

as a stochastic differential equation (or SDE). For example, the equation

dYt � fpt, Btqdt� gpt, BtqdBt

means that

Yt � Y0 �

» t
0
fps,Btqds�

» t
0
gps,BsqdBs

where the first term on the right is a Lebesgue-Stieltjes integral and the second is an Itô integral.

Writing such an expression is not an assertion that there is a process solving the equation; in

general there is a whole theory devoted to the existence and uniqueness of solutions to SDEs.

We will not touch on that theory in this course.

We have defined the Itô integral for R valued processes but it extends naturally to Rd valued

processes via componentwise operations. Of course our primary application later in the course

will be in two dimensions (since R2 � C). For simplicity we will continue to work in one

dimension and we will move into two dimensions only when it becomes necessary to do so.

1.6 Properties of the Itô Integral II

Recall that in Section 1.3 we set out a two stage method for establishing properties of the Itô

integral of Definition 1.2.6. In order to transfer such properties, where possible, onto the Itô

integral of Definition 1.5.2 two additional stages are needed:
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3. Pick an appropriate localizing sequence M PM0,loc. Prove the property for the localized

integral
³�
0 dM

τn
s and use (1.29) to deduce the result for

³�
0 dMs.

4. Deduce the property for finite variational integrals and combine.

We will typically not bother with stage 4, under the tentative assumption that you are familiar

with Lebesgue-Stieltjes integrals. We have already done stages 1 and 2 for some properties so

in most of the lemmas below we need only carry out the third step. For example:

Lemma 1.6.1 Let M PM0,loc and let F P L2
locpMq. Let τ   8 be a stopping time. Then» �^τ

0
FsdMs �

» �

0
FsdM

τ
s .

Proof: We have already shown this in Lemma 1.4.7 for the case where M P M2
0 and F P

L2pMq. Let pτnq be given by (1.27) and then by Lemma 1.4.7 we have» �^τ

0
FsdM

τn
s �

» �

0
FsdM

τn^τ
s

The result follows by (1.29). �

As in Section 1.3, the easiest property to deduce is linearity in terms of the integrand.

Lemma 1.6.2 Let M PM0,loc and F,G P L2
locpMq. Then» �

0
Fs �Gs dMs �

» �

0
FsdMs �GsdMs

Proof: Let pTnq be a localizing sequence for M and recall that by Lemma 1.4.4 we can choose

Tn such that MTn PM2
0. Define

Sn � inf

"
t ¥ 0 ;

����» t
0
F 2
s dxMys

���� ¥ n

*
Rn � inf

"
t ¥ 0 ;

����» t
0
G2
sdxMys

���� ¥ n

*
and set

τn � Ts ^ Sn ^Rn ^ n.

Then pτnq is a localizing sequence for M and F,G P L2pM τnq for all n.

Hence, by Lemma 1.3.1 we have» �

0
Fs �Gs dM

τn
s �

» �

0
FsdM

τn
s �

» �

0
GsdM

τn
s .

The result the follows by (1.29). �

Of course, we require the extension of Lemma 1.3.6.

Lemma 1.6.3 Let M,N PM0,loc and let F P L2
locpMq, G P L2

locpNq. Then for all tB» �

0
FsdMs,

» �

0
GsdNs

F
t

�

» t
0
FsGsdxM,Nys.
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Proof: Recall that in Lemma 1.3.6 we have proved this result for the case where M,N PM2
0

and F P L2pMq, G P L2pNq.

Let M,N PM0,loc and F P L2
locpMq, G P L2

locpNq. Let pτFn q be as in (1.27), let pτGn q be the

equivalent sequence for G and set τn � τFn ^ τGn . Then pτnq is a localizing sequence for both

M and N and
���³t0 FsdxMys

��� , ��³τn0 GsdxNys
�� are both bounded above by n. Hence, for each n we

have M τn , N τn P M2
0 and F P L2pM τnq, G P L2pN τnq. By Lemma 1.3.6 for all s, t, n we thus

have B» �

0
FsdM

τn
s ,

» �

0
GsdN

τn
s

F
�

�

» �

0
FuGsxM

τn , N τnys

By applying Lemmas 1.6.1 and 1.4.6 to the left hand side and Lemma 1.4.6 to the right hand

side we obtain B» �

0
FsdMs,

» �

0
GsdNs

F
�^τn

�

» �^τn

0
FuGsxM,Nys.

Since τn Ñ8 almost surely as nÑ8, the result follows. �

A notable omission in our construction so far is that Brownian motion pBtq
8
t�0 is a square

integrable martingale but not an L2 bounded martingale; B R M2
0. Consequently our first

version of the Itô isometry (Theorem 1.2.9) did not apply to Brownian motion. However, B is

most certainly a local martingale and, for each T ¡ 0, pBtq
T
t�0 is an L2 bounded martingale. In

this case and in others like it, an analogue of Theorem 1.2.9 holds.

Corollary 1.6.4 (Itô isometry, II) Suppose that M PM0,loc and and suppose F P L2
locpMq.

Suppose that E
�
M2
T

�
  8 and

³T
0 E

�
F 2
s

�
dxMys   8 for some T ¡ 0. Then

E

��» t
0
FsdMs


2
�
� E

�» t
0
F 2
s dxMys

�
(1.30)

for all t P r0, T s. Further, if N PM0,loc and G P L2
locpNq, with ErN2

T s   8 and
³T
0 E

�
G2
s

�
dxNys  

8 then

E
��» t

0
FsdMs


�» t
0
GsdNs


�
� E

�» t
0
FsGsdxM,Nys

�
. (1.31)

for all t P r0, T s.

Proof: The first statement is a special case of the second. The second statement follows from

Lemma 1.3.6 and appropriate localization. �

Note in particular that if M is Brownian motion then the above theorem holds for all T ¡ 0.

This happens in other important cases too.

Remark 1.6.5 We could have started out defining the Itô integral over intervals of time r0, T s

where T   8, instead of r0,8q. Had we done so we could have obtained Theorem 1.6.4 much

sooner, but at the cost of subsequently having to fiddle around with two (instead of just one)

objects that were tractable only in a local sense.

We need one final ‘elementary’ property of the Itô integral, namely the result of taking one

Itô integral with respect to another. Formally, the result is the same as for Lebesgue-Stieltjes

integrals.
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Lemma 1.6.6 Suppose that M PM0,loc. Suppose that for each t ¥ 0, the process ps, ωq ÞÑ Ftpωq

for s P r0, ts, ω P Ω is measurable with respect to Br0, ts � Ft. Suppose that G P L2
locpMq and

FG P L2
locpMq. Then F P Llocp

³�
0GsdMsq and for all t» t

0
Fsd

�» s
0
GudMu



�

» t
0
FsGsdMs.

Proof: See Question 2 on Problem Sheet 2. �

1.7 Itô’s Formula

We need only one further tool in order to calculate fluently with stochastic integrals, namely

Itô’s formula. In the spirit of the chain rule for finite variational integrals, Itô’s formula allows

us to to express fps, Fsq in terms of integrals of the derivatives of f .

Definition 1.7.1 Let f : r0,8q � Rd Ñ R. We will often write fpt, x1, x2, . . . , xdq � fpt, xq

where x � pxiq
d
1. The t coordinate is referred to as the time coordinate and the x coordinate

as the spatial coordinate.

When writing Itô’s formula in dimension d ¡ 1 it is normal to use the subscript to indicate

dimension and place the time coordinate as the primary argument. For example, we would

usually write X � pXiq
d
i�1 for an Rd valued stochastic process with ith coordinate projection Xi

where Xi � pXiptqq
8
t�0.

Of course this clashes with our usual notation and we hope no confusion occurs. Except

for in this section, the only dimension that interests us will be R2 � C, in which we will write

stochastic processes as Zt � Xt � iYt (for real Xt, Yt), thus avoiding any potential confusion.

Theorem 1.7.2 (Itô’s formula) Let f : r0,8q � Rd Ñ R and suppose that the derivatives

ft and fxixj
exist and are continuous (for all 1 ¤ i, j ¤ d). For i � 1, . . . , d, suppose that

Xip�q � Xip0q�Mip�q�Aip�q is a continuous semimartingale with martingale part Mi and finite

variational part Ai. Then, for all t,

fpt,Xptqq � fp0, Xp0qq �

» t
0
ftps,Xpsqqds

�
ḑ

i�1

» t
0
fxi

ps,XpsqqdMipsq �
ḑ

i�1

» t
0
fxi

ps,XpsqqdAipsq

�
1

2

ḑ

i,j�1

» t
0
fxixj

ps,XpsqqdxMi,Mjys. (1.32)

Sketch of Proof: Proving Itô’s formula is a serious piece of work and here we restrict

ourselves to a non-rigorous outline of one method of proof.

First, we note that Itô’s formula holds for linear functions fpt, xq � a0� t0t�
°d
i�1 aixi. This

follows from nothing more than the linearity of the Itô integral and the formula» t
0
dXipsq � Xiptq �Xipsq,

which is itself easy to prove using Theorem 1.3.3.
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Secondly, we look to prove Itô’s formula in the special case fpt, xq � x2, where f : r0,8q �

R Ñ R. To this end, let us briefly write Xt � Mt � At where Xt is an R valued continuous

semimartingale. Let 0 � t0   t1   . . .   tn � t and note that

X2
t �X2

0 �
ņ

j�1

pX2
tj �X2

tj�1
q �

ņ

j�1

2Xtj�1
pXtj �Xtj�1

q �
ņ

j�1

pXtj �Xtj�1
q2. (1.33)

For the first term on the right hand side we have

ņ

j�1

2Xtj�1
pXtj�Xtj�1

q �
ņ

j�1

2Xtj�1

» tj
tj�1

dXs �
ņ

j�1

» tj
tj�1

2Xtj�1
dXs �

» t
s

ņ

j�1

1ts P rti�1, tjquf
1pXtj�1

qdXs

and, as supj |tj � tj�1| Ñ 0 we have (at least, heuristically) that» t
s

ņ

j�1

1ts P rti�1, tjquf
1pXtj�1

qdXs Ñ

» t
s
f 1pXsqdXs.

For the second term on the right hand side of (1.33) we have

ņ

i�1

pXti �Xti�1
q2 �

ņ

i�1

pMti �Mti�1
q2�2

ņ

i�1

pMti �Mti�1
qpAti �Ati�1

q�
ņ

i�1

pAti �Ati�1
q. (1.34)

The rightmost term on the right hand side of the above equation tends to zero as supj |tj�tj�1| Ñ

0 because A has finite variation. By (1.1), the leftmost term on the right hand side tends to

xMyt. The middle term thus also tends to zero by the Cauchy-Schwarz inequality. We thus

obtain

X2
t �X2

0 �

» t
0

2XsdXs � xMyt,

and the case fpxq � x2 is completed by noting fxx � 2 and

xMys �

» t
0
dxMys �

1

2

» t
0

2dxMys

which completes the case fpxq � x2.

From the two special cases computed above and Taylor’s theorem, the full version of Itô’s

formula can be deduced. Let us briefly outline how this is done. Firstly, we use (1.2) and the

polarization identity xy � 1
4ppx � yq2 � px � yq2q to upgrade the case fpxq � x2 into the case

where fpx1, . . . , xdq is a quadratic form. We then apply (the multivariate) Taylor’s theorem to

fpt, xq, writing out both the first and second order terms. Various applications of localization,

finite variation, the martingale property and the cases of Itô’s formula that we already know

come together and allow us to match up the non-vanishing terms to (1.32) and control the

remaining error terms. �

Remark 1.7.3 Itôs formula is often abbreviated to read

dfpt,Xptqq � ftpt,Xptqqdt�
ḑ

i�1

fxi
pt,XptqqdXiptq �

1

2

ḑ

i,j�1

fxixj
pt,XptqqdXiptqdXjptq (1.35)

with the convention that dXiptq � dMiptq � dAiptq and the ‘multiplication table’
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dAjptq dMjptq

dAiptq 0 0

dMiptq 0 dxMi,Mjyt

There is more than just an abuse of notation involved here. Let us attempt to wave our hands

and describe what is going on. In the world of finite variational functions,
³�
0 . . . dAiptqdAjptq

is formally the zero operator, since the multiplication of two dp�qs causes a lower order term

that a single Lebesgue-Stieltjes
³

is unable to pick up. However, (1.1) means that the paths of

continuous (local) martingales oscillate in such a way as creates terms
³�
0 . . . dMiptqdMjptq where

the Itô
³

does pick up something non-zero. The cross terms dAiptqdMjptq become zero because

M is a martingale.

See (1.34) and the paragraph immediately below it in our sketch proof of Itô formula to see

this working in practice.

Corollary 1.7.4 Let f : r0,8qRd Ñ R be twice continuously differentiable and let X be an Rd

valued continuous semimartingale. Then t ÞÑ fpt,Xtq is an R valued continuous semimartingale.

27



Chapter 2

Complex Brownian Motion

This chapter begins by transferring much of the real Itô calculus from the preceding chapter into

C. We will then use this machinery to build up a picture of the behaviour of complex Brownian

paths and prove the conformal invariance of Brownian motion.

Let us recall the definition of complex Brownian motion from (0.1).

Definition 2.0.1 A complex valued stochastic process Z � X � iY is a complex Brownian

motion if X and Y are independent real Brownian motions.

Recall also that an Rd valued process X � pXiq
d
1 is a Brownian motion if and only if X is

a continuous process with independent increments with Xt � Xs � N p0, t � sq. It follows

from this definition that tXi ; i ¤ du is a set of mutually independent real Brownian motions.

Consequently, the following statements are equivalent:

• X � iY is a complex Brownian motion.

• pX,Y q is a Brownian motion in R2.

• X and Y are independent real Brownian motions.

Complex Brownian motion is a truly extraordinary object and from here on becomes the

centrepiece of the course. Dimension 2 (i.e. C � R2) is sometimes referred to as the critical

dimension for (Euclidean) Brownian motion. The reason for this terminology is as follows.

In R, Brownian motion is strongly recurrent; not only does it hit every x P Rd almost surely

but it also returns to each x P Rd infinitely many times. In R3 and higher dimensions, Brownian

motion is transient. In fact, for each x at which it does not start there is positive probability

that, for some ε ¡ 0, Brownian motion (run for all time) does not even hit Bpx, εq.
In C � R2, Brownian motion strikes a delicate balance between transience and recurrence.

As we will see in this chapter, complex Brownian motion almost surely does not hit any given

deterministic point x P Rd (unless it starts there) but, in spite of this, the closure of the Brownian

path is almost surely the entire complex plane. This unusual mixture underpins the usefulness

of Brownian motion as a tool in complex analysis; in some sense Brownian motion visits all of

the complex plane but in another sense it visits none of it.

Remark 2.0.2 Trivially, if z P C and Z� is a complex Brownian motion with Z0 � 0 then

Wt � z � Z� is a complex Brownian motion with W0 � z. Further, given Z0 Definition 2.0.1

uniquely specifies the distribution of complex Brownian motion (as a path valued process). With
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this in mind, for simplicity we will often state results with the assumption that Z0 � 0, even if

it is not really needed.

2.1 Harmonic Functions

We note that C � tx�iy ; x, y P Ru is in natural bijective correspondence with R2 � tpx, yq ; x, y P

Ru through

x� iy Ø px, yq. (2.1)

We equip both R2 and C with their Euclidean norms and note that (2.1) is an isometric iso-

morphism. This correspondence will allow us to transfer seamlessly between C and R2. Note in

particular that a function f : C Ñ C can be written as

fpzq � fpx, yq � upx, yq � ivpx, yq (2.2)

where u, v : R2 Ñ R2, z � x � iy and x, y P R. In what follows, whenever we use the symbols

f, u, v, z, x, y we implicitly cast them in the form defined by (2.2).

Recall that a function f : D Ñ C, where D � C is open, is analytic if the limit

f 1pzq � lim
wÑz

fpwq � fpzq

w � z
(2.3)

exists for all z P D. A cursory glance at the above formula might suggest that analytic func-

tions are the complex equivalent of what, in real analysis, would be simply called differentiable

functions. In fact, it can be shown that analytic functions are smooth - they are infinitely

differentiable in the sense defined in (2.3).

We define

Bf �
Bf

Bz
�

1

2

�
Bf

Bx
� i

Bf

By



,

B̄f �
Bf

Bz
�

1

2

�
Bf

Bx
� i

Bf

By



.

These operators (which are pronouced dee and dee-bar) will appear in the complex Itô formula

and, in the following lemma, offer an especially concise way of stating the Cauchy-Riemann

equations.

Remark 2.1.1 We will use several notations for derivatives interchangably; f 1, fz and f p1q all

refer to the (complex) derivative of f , whereas fx, and Bf
Bx refer to the derivative taken in the

direction of the x coordinate.

Lemma 2.1.2 (Cauchy-Riemann equations) Let D be a domain and let f : D Ñ C. Then

f is analytic if and only if B̄f � 0 and, in this case, f 1 � Bf .

Proof: Recall the Cauchy-Riemann equations: f � u � iv is analytic if and only if ux � vy
and uy � �vx. Note that

2B̄f � ux � ivx � ipuy � ivyq � ux � vy � ipvx � uyq.

Hence B̄f � 0 holds if and only if the Cauchy-Riemann equations hold, which proves the first

statement. For the second, note that if f is analytic then

2Bf � ux � ivx � ipuy � ivyq � 2pux � ivxq � 2fx � 2fz,
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hence f 1 � Bf . �

Definition 2.1.3 We say that a twice differentiable function f (between open subsets of R2 or

C) is harmonic if

∆f � 0,

where ∆f � B2f
Bx2 �

B2f
By2 .

The Laplacian ∆ can be written in terms of the B and B̄ operators. Suppose D is a domain

and f : D Ñ C is twice differentiable (in the complex sense), then a short calculation shows that

BB̄f � B̄Bf �
1

4
∆f. (2.4)

The precise relationship between analytic and harmonic functions is described in the following

two lemmas. Note in particular that the following lemma implies that all analytic functions are

harmonic.

Lemma 2.1.4 If f � u� iv is analytic then u and v are harmonic.

Proof: If f is analytic then by Lemma 2.1.2 Bf � f 1, which is analytic, hence B̄Bf � ∆f � 0.

�

Lemma 2.1.5 Suppose that D is a simply connected domain. Let z0 P D and suppose u : R2 Ñ

R is a harmonic function in D. Then there exists a harmonic function v : R2 Ñ R such that

f � u� iv is analytic in D. Further, if we specify fpz0q then v is unique.

Proof: This is a standard result in complex analysis and we omit the proof. �

2.2 Martingales and Itô calculus (in C)

In keeping with the z � x � iy convention introduced in the previous section, we will often

denote a complex valued stochastic processes by

Zt � Xt � iYt

where X and Y are real valued stochastic processes. The definition of a martingale extends

naturally from R into Rd and C.

Definition 2.2.1 An Rd valued stochastic process X � pXjq
d
j�1 is a (local) martingale if, for

each j, Xj is a real valued martingale, with respect to the same filtration as X. A complex valued

stochastic process Z � X�iY is a complex (local) martingale if the R2 valued process pX,Y q

is a martingale.

The bracket process extends naturally to C valued square integrable martingales and local

martingales, using bilinearity to expand out into real/imaginary parts and then using the real

definitions. To be precise, if Z � X � iY and W � U � iV are two complex valued local

martingales split respectively into real and imaginary parts then

xZ,W yt � xX � iY, U � iV yt

� xX,Uyt � xY, V yt � i xX,V yt � i xY,Uyt,

xαZ, βW y � αβ xZ,W y
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where α, β P C.

Remark 2.2.2 With this definition, x�, �y is a symmetric bilinear form on both R and C. As

always, when extending a bilinear form from R to C there is a choice between bilinearity and

sesquilinearity in C. In this particular case there is no established convention and some other

texts use a sesquilinear x�, �y (in which case xαZ, βW y � αβxZ,W y).

Lemma 2.2.3 If Z and W are square integrable complex pFtq martingales then ZW � xZ,W y

is a complex pFtq martingale. Similarly, if Z and W are complex local pFtq martingales then

ZW � xZ,W y is a complex local pFtq martingale.

In both cases, the bracket process xZ,W y is the unique continuous pFtq adapted process of

bounded variation with this property.

Proof: This is easily deduced from bilinearity and the corresponding results for real martin-

gales (Theorems 1.1.10 and 1.4.5). �

Recall equation (1.1), which (after setting M � N) states that

xMyt � lim
supi |ti�1�ti|Ñ0

ņ

i�1

pMti�1
�Mtiq

2 (2.5)

In words, t ÞÑ xMyt counts the amount of 2-variation that the path t ÞÑMt experienced during

the interval r0, ts. Consequently, xMy acts as an internal clock for M , not counting time or

distance travelled but counting a very particular kind of oscillation.

Remark 2.2.4 If a real local martingale M has paths of finite variation and is such that M0 � 0,

then M � 0 for all time. See Theorem IV.30.4 in Rogers and Williams (2000).

We would like to extend this functionality of the real bracket process into the complex world.

However, a process in C can move in many more directions than a process in R, so oscillations

can be significantly more complicated in their nature. Consequently, in C it turns out that in

order to sensibly condense the information into a single number we should further restrict the

class of processes that we are interested in.

Definition 2.2.5 A complex (local) martingale Z � X�iY is said to be conformal if xZ,Zy �

0.

There is a subtlety to this definition which will become visible to us primary through ‘lucky’

cancellations in formulas involving conformal martingales. It is not easy to capture the root

cause, but let us make an attempt at doing so.

We have commented above that the bracket process in R acts as an internal clock. Since

M2 � xMy is a martingale whenever M is a square integrable martingale, the bracket process

is intimately connected to the behaviour of M ; anything we know about the bracket processes

gives information about M . Conformality of Z � X � iY means that

xZ,Zy � xXy � xY y � 2ixX,Y y � 0

which, comparing real and imaginary parts, implies that xXy � xY y (pathwise!) and xX,Y y � 0.

Therefore, a conformal (local) martingale Z has real and imaginary parts with their internal
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clocks xXy and xY y running at exactly equal rate. Further, xX,Y y � 0 implies that in some

sense X and Y evolve without becoming too dependent on each other (but they need not be

actually independent).

Note that if Z � X � iY is a conformal local martingale then

xZ, Z̄y � xXy � xY y � ixX,Y y � ixY,Xy

� 2xXy.

Consequently, for conformal local martingales the process xZ, Z̄y plays the same role that xMy

played for real local martingales.

Remark 2.2.6 Because of the potential for confusion between xZ,Zy and xZ, Z̄y we do not use

the notation xZy for complex martingales.

Lemma 2.2.7 Let Z be a complex martingale. Then Z is conformal if and only if Z̄ is confor-

mal.

Proof: This is immediate since xZ̄, Z̄y � xXy � xY y � 2i xX,Y y. �

Naturally, we have the following lemma.

Lemma 2.2.8 Complex Brownian motion is a conformal martingale.

Proof: Let us write Z � X � iY for independent real Brownian motions X and Y and note

that xZy � xXy � xY y � 2i xX,Y y. Since X and Y are independent we have xX,Y y � 0 and

since X and Y are real Brownian motions we have xXyt � xY yt � t. The result follows. �

We have already mentioned that Itô calculus extends naturally to Rd via componentwise

operations. By this we mean that if Zt � Xt � iYt is a complex stochastic process and Wt �

Ut � iVt is a complex local martingale then» t
0
ZtdWt �

» t
0
XtdUt �

» t
0
YtdVt � i

�» t
0
XtdVt �

» t
0
YtdUt



providing X,Y, U, V are such that all terms of the right hand side can be defined as real Itô

integrals according to Definition 1.5.2.

Many properties of the Itô integral carry over naturally from R to C; for example linearity

in both the integrand and integrator are automatic. For clarity we record here precise complex

versions of some other properties.

Let M and N be continuous complex local martingales and let F and G be complex valued

processes. For each of the formulas below, it is required that M,N,F,G satisfy the conditions

necessary for the Itô integrals which appear in the corresponding formula to exist (i.e. the

real/imaginary parts of these processes are such that the corresponding real valued integrals

exist, as defined in Chapter 1, over the same filtered space). Then for 0 ¤ u ¤ t ¤ 8, α P C
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and stopping times τ   8

α

» t
0
FsdMs �

» t
0
αFsdMs» t

0
FsdMs �

» t
0
GsdMs �

» t
0
Fs �GsdMs» u

0
FsdMs �

» t
u
FsdMs �

» t
0
FsdMs» t

0
Fsd

�» s
0
GsdMs



�

» t
0
FsGsdMsB» �

0
FsdMs,

» �

0
GsdNs

F
t

�

» t
0
FsGsdxM,Nys» t^τ

0
FsdMs �

» t
0
FsdMs^τ .» t

0
FsdMs �

» t
0
F̄sdM̄s

In each case, the formula can be deduced from its corresponding real equivalent, using the

component wise definitions of integrals taking values in R2 � C. From this point onwards we

will use the above properties of the Itô integral without comment.

Recall that Itô’s formula gave us an expression for fpXtq in terms of the derivatives of f and

of the process pXsqs t. In C � R2 the Ito formula for fpZq has many potential simplifications

that can be caused by properties of both f and X.

The ‘full’ Itô formula for fpt, Ztq can be easily found by rewriting Theorem 1.7.2 in notation

for C rather than R2. In fact, we will only need the special case where fpt, Ztq � fpZtq.

Theorem 2.2.9 (Itô’s formula in C) Suppose that Z is a complex continuous local martin-

gale and that f : C Ñ C be twice continuously differentiable. Then

fpZtq � fpZ0q �

» t
0
BfpZsqdZs �

» t
0
B̄fpZsqdZ̄s

�

» t
0
BBfpZsqdxZ,Zys �

» t
0
B̄B̄fpZsqdxZ̄, Z̄ys

� 2

» t
0
BB̄fpZsqdxZ, Z̄ys.

Proof of the above theorem is Question 1 on Problem Sheet 3 and involves nothing more

than rewriting the real Itô formula with componentwise operations in C � R2. The potential

simplifications to Theorem 2.2.9 are the following.

• If Z is a conformal local martingale then by Lemma 2.2.7 xZ,Zy � xZ̄, Z̄y � 0. Conse-

quently the second line vanishes.

• If f is harmonic then by (2.4) we have BB̄f � 0. Consequently the third line vanishes.

• if f is analytic then Bf � f 1 and B̄f � 0 by Lemma 2.1.2. In this case by Lemma 2.1.4 f

is also harmonic, so we have fpZtq � fpZ0q �
³t
0 f

1pZsqdZs �
³t
0 f

2pZsqdxZ,Zys.

The case that we most often require is when all of the above simplifications occur.
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Corollary 2.2.10 Suppose that Z is a conformal complex continuous local martingale taking

values in a domain D � C and suppose that f is analytic on D. Then

fpZtq � fpZ0q �

» t
0
f 1pZsqdZs. (2.6)

Further, fpZtq is a conformal complex continuous local martingale and

xfpZ�q, �fpZ�qyt � » t
0
|f 1pZsq|

2ds.

Proof: Equation (2.6) follows from Theorem 2.2.9 and our comments above about its simpli-

fications. The second statement follows by using (2.6) to calculate xZ,Zy and xZ, Z̄y. �

No comment on the fortunate nature of (2.6) should be required. In fact, with a little more

work we can also prove the ‘chain and product rules’.

Lemma 2.2.11 Let Z and W be conformal local martingales. Then

ZtWt � Z0W0 �

» t
0
ZsdWs �

» t
0
WsdZs

Proof: This follows from the real Itô formula and the componentwise definition of complex

Itô integrals. �

Lemma 2.2.12 Let f : D Ñ C and g : fpDq Ñ C be analytic and let Z be a conformal local

martingale. Then

fpgpZtqq � fpgpZ0qq �

» t
0
f 1pgpZtqqdgpZtq.

Proof: By Corollary 2.2.10, gpYtq is a conformal local martingale. A further application of

Corollary 2.2.10, to fpYtq where Yt � gpZtq, yields the stated result. �

2.3 Time Change

We are now well equipped to examine complex Brownian motion as a process in its own right.

In this section we will prove two well known results; Lévy’s characterization of Brownian motion

and the time change which connects local martingales to Brownian motion.

Lemma 2.3.1 Let M � pMjq
d
j�1 be a continuous Rd valued process adapted to the filtration

pFtq. Then M is a Brownian motion if and only if

E rexp piξ.pMt �Msqq | Fss � exp

�
�

1

2
|ξ|2pt� sq



(2.7)

for all s ¤ t and ξ P Rd.

Remark 2.3.2 Note that the dot in ξ.pMt �Msq denotes the dot product of vectors in Rd. As

we will see in the proof, equation (2.7) implies that the increment Mt � Ms has the correct

characteristic function and is independent of pMuqu s.
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Proof: To see the forwards implication, simply use the Markov property of Brownian motion

at time s and then calculate the characteristic function of the normal distribution. Note that

there is a slightly technicality here; the filtration pFtq may be larger than the generated filtration

of M , but the Markov property is still valid.

For the reverse implication, note that (2.7) implies that Mt � Ms has the characteristic

function of a normal distribution with mean 0 and variance t� s, which it must therefore be. It

remains to show that, given t1   t2   . . .   tn, pMt1 ,Mt2 �Mt1 , . . . ,Mtn �Mtn�1
q are a set of

independent random variables. To see this, fix pξlqnl�1 � Rd, set X0 � 0 and use (2.7) iteratively

to see that

E

�
n¹
l�1

exp
�
iξl.pMtl �Mtl�1

	�
� E

�
E

�
n¹
l�1

exp
�
iξl.pMtl �Mtl�1

	 ���Ftl�1

��

� E

�
n�1¹
l�1

exp
�
iξl.pMtl �Mtl�1

	
E
�
exp

�
iξn.pMtn �Mtn�1

�
| Ftn�1

��

� exp

�
�

1

2
|ξn|2ptn � tn�1q



E

�
n�1¹
l�1

exp
�
iξlpMtl �Mtl�1

	�

�
n¹
l�1

exp

�
�

1

2
|ξl|2ptl � tl�1q




�
n¹
l�1

E
�
exp

�
iξl.pMtl �Mtl�1

	�
.

This implies (using standard properties of characteristic functions) that the increments Mtl �

Mtl�1
are mutually independent. �

Theorem 2.3.3 (Lévy characterization of Brownian motion) Let M � pMjq
d
j�1 be an

Rd valued process with continuous paths. Suppose that M is adapted to the filtration pFtq. Then

M is a Brownian motion if and only if all the following conditions hold:

1. Each process t ÞÑMjptq is a local pFtq-martingale in R.

2. For any i, j ¤ d, xMjptq,Mkptqy � δj,kt.

Proof: The forward implication is clear and it suffices to prove the reverse implication. So,

suppose that each Mjp�q is a local pFtq martingale and that xMj ,Mkyt � δjkt. Let ξ P Rd and

define

Wt � exp

�
i
ḑ

l�1

ξjMlptq �
1

2
|ξ|2t

�
.

We would like to apply Itô’s formula to W . However, W is a complex valued function of

pM1ptq, . . . ,Mdptqq and as such is (slightly) beyond what the complex versions of Itô’s formula

stated in the previous chapter can handle. Instead, we write

Wt � exp

�
�

1

2
|ξ|2t



cos

�
ḑ

l�1

ξlMlptq

�
� i exp

�
�

1

2
|ξ|2t



sin

�
ḑ

l�1

ξlMlptq

�
� Vt cospUtq � iVt sinpUtq
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(where Ut �
°d
l�1 ξlMlptq �

1
2 |ξ|

2t and Vt � e�
1

2
|ξ|2t) and apply the real Itô formula componen-

twise to the real and imaginary parts. Note that this is an entirely rigorous approach; the Itô

integral extends to higher dimensions by componentwise operations and C � R2. The result is

Wt �
ḑ

j�1

» t
0
�ξjVs sinpUsqdMjpsq �

1

2

ḑ

j,k�1

» t
0
�ξ2

jVs cospUsqdxMj ,Mkys �

» t
0

1

2
|ξ|2Vs cospUsqds

� i

$&%
ḑ

j�1

» t
0
ξjVs cospUsqdMjpsq �

1

2

ḑ

j,k�1

» t
0
�ξ2

jVs sinpUsqdxMj ,Mkys �

» t
0

1

2
|ξ|2Vs sinpUsqds

,.-
�

ḑ

j�1

» t
0
iξjVse

iUsdMjpsq

(note that the two rightmost terms cancel in both of the above lines). It follows immediately that

Wt is a complex local martingale. Since |Wt| ¤ 1 it follows immediately by Lemma 1.4.2 that Wt

is in fact a martingale. Therefore, by the optional stopping theorem we have E rWt �Ws |Fss � 0

for s ¤ t, which is precisely (2.7). It follows immediately by Lemma 2.3.1 that Mt is a Brownian

motion. �

Corollary 2.3.4 Let Z be a C valued process and suppose Z is adapted to the filtration pFtq.
Then Z is a Brownian motion if and only if all the following conditions hold:

1. Z almost surely has continuous paths.

2. Z is a conformal local martingale

3. xZ, Z̄yt � 2t for all t.

Proof: The forwards implication follows from using Lemma 2.2.8 and noting that xZ, Z̄yt �

xXyt � xY yt � 2i xX,Y yt � 2t. For the reverse implication,

0 � xXyt � xY yt � 2i xX,Y yt

2t � xXyt � xY yt � 2i xX,Y yt.

Solving the above gives xXyt � xY yt � t and xX,Y y � 0. The result then follows from Theorem

2.3.3. �

It is natural to believe that complex Brownian motion is preserved (with no need for time

change) under rotations. Thanks to the Lévy characterisation this is very easy to prove.

Lemma 2.3.5 Let Z be a complex Brownian motion with Z0 � 0 and let fpzq � zeiθ where

θ P r0, 2πq. Then t ÞÑ fpZtq is a complex Brownian motion.

Proof: Since Z and fpzq � eiθz are continuous, eiθZ is continuous. Since f is deterministic,

eiθZ is adapted to the same filtration as Z and since f is linear eiθZ is a martingale. The

bilinearity of the bracket process gives

xeiθZ, eiθZyt � e2iθxZ,Zyt � 0

xeiθZ,�eiθZyt � eipθ�θqxZ, Z̄yt � 2t
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and it follows from Corollary 2.3.4 that eiθZ is a complex Brownian motion. �

The remainder of this section is concerned with time changes. In words, a time change means

that we reparameterize the time coordinate, in much the same way as is standard for ODEs. In

the random setting there is the extra freedom that we may change time differently along each

path of the random process.

Definition 2.3.6 Let pFtq be a filtration and let M be an pFtq adapted process. An (Ft) time

change is a collection pτtq
8
t�0 of finite stopping times such that

• for each s, τs is an pFtq stopping time and

• for all s   t, τs ¤ τt.

The time change τ � pτtq is said to be strictly increasing if τs   τs whenever s   t.

We use τt and τptq interchangeably. The process M time changed by τ is t ÞÑ Mτptq and is

adapted to the filtration pFτptqq.

Lemma 2.3.7 Let Z be a complex conformal pFtq martingale with continuous paths. Suppose

that t ÞÑ xZ, Z̄yt is strictly increasing and that limtÑ8xZ, Z̄yt � 8. Define

τt � infts ¥ 0 ; xZ, Z̄ys ¡ 2tu.

Then τ � pτtq is a strictly increasing time change and t ÞÑ Zτptq is a complex Brownian motion

adapted to pFτptqq.

Proof: Note that t ÞÑ xZ, Z̄yt is automatically non-negative and continuous (and also increas-

ing, but our hypothesis is stronger). Since t ÞÑ xZ, Z̄yt is strictly increasing and continuous,

t ÞÑ τt is also strictly increasing and continuous. Since xZ, Z̄yt Ñ 8 as tÑ 8, τptq   8 for all

t. Hence t ÞÑ Zτptq is continuous. Further, since t ÞÑ xZ, Z̄yt is pFtq adapted, for each s τs is an

pFtq stopping time.

Define

σpnq � inftt ¥ 0 ; |Zτptq| ¥ nu, φpnq �
1

2
xZ, Z̄, yσpnq.

Note that

τpφpnqq � infts ¡ 0 ; xZ, Z̄ys ¡ 2φpnqu

� infts ¡ 0 ; xZ, Z̄ys ¡ xZ, Z̄yσpnqu

� σpnq

where the last line follows by continuity of xZ, Z̄y�. Since τ is strictly increasing we have

tt ¤ φpnqu � tτptq ¤ σpnqu (2.8)

and hence

τpt^ φpnqq � σpnq ^ τptq. (2.9)

By (2.8), φpnq is an pFτptqq stopping time and by definition of σpnq the process t ÞÑ Zt^σpnq is a

bounded martingale. Applying the optional stopping theorem and (2.9) we have

E
�
Zτpt^φpnqq |Fτpsq

�
� E

�
Zσpnq^τptq |Fτpsq

�
� Zσpnq^τpsq � Zs^φpnq (2.10)
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for all s ¤ t. Since |Z| is continuous we have σpnq Ò 8 as n Ñ 8, hence Zτptq is a local pFτptqq
martingale. Hence Z̄τptq is also an pFτptqq martingale. Hence ZτptqZ̄τptq � xZτp�q, Z̄τp�qyt is an

pFτptqq local martingale and in particular the bracket xZτp�q, Z̄τp�qy is well defined. Hence

xZτp�q, Z̄τp�qyt � xZ, Z̄yτptq � 2t

by definition of τ and continuity of the bracket. By Lemma 2.2.3 we have xZτp�q, Z̄τp�qyt � 2t.

Further, since Z is conformal we have xZ,Zy � 0 and hence also xZτp�q, Zτp�qy � 0, so Zτp�q is

conformal.

We thus have all the conditions with which to apply Corollary 2.3.4 to Z, from which it

follows that Z is a complex Brownian motion. �

Remark 2.3.8 An alternative proof of Lemma 2.3.5 is to use Lemma 2.3.7 and show that in

this case τt � 2t.

Corollary 2.3.9 (Dubins-Schwarz) Let M be a continuous real valued local martingale and

suppose that xMyt Ñ8 as tÑ8. Define

τt � infts ¥ 0 ; xMys ¡ tu.

Then t ÞÑMτptq is a Brownian motion adapted to pFτptqq.

Sketch of Proof: Corollary 2.3.9 can be proved directly in similar style to our proof of

Theorem 2.3.7, using Theorem 2.3.3 in place of Corollary 2.3.4. We omit the details, save for

the comment that in the real case the bracket need not be strictly increasing. �

2.4 Recurrence

In this section we prove that complex Brownian motion is recurrent, in as strong a sense as one

could reasonably expect of a random process in a continuum.

Lemma 2.4.1 Let Z be a complex Brownian motion with Z0 � 0 and let R ¡ 0. Then

P rDt, |Zt| ¥ Rs � 1.

Proof: Let Z � X � iY . Then pX,Y q is a Brownian motion in R2 and in particular at time

t has distribution N p0, tq. Hence,

P r|Zt| ¤ Rs �

» R
0

1

2πt
e�r

2{2t2πr dr �
�
�e�r

2{2t
�R

0
� 1 � e�r

2{2t ¤
R2

2t
.

Therefore,
8̧

n�1

P r|Zn2 | ¤ Rs ¤
8̧

n�1

R2

2n2
  8

and by Borel-Cantelli, P r|Zn2 | ¤ R i.o.s � 0, which implies the stated result. �

Let A be an open annulus containing 0 and such that

A � tz P C | , r   |z � w|   Ru (2.11)

for some w P C (w is the center of the annulus). Let TA � inftt ¥ 0 ; Zt R Au and note that

Lemma 2.4.1 implies that TA   8 almost surely.
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Lemma 2.4.2 Let Z be a complex Brownian motion with Z0 � 0 and let TA be the first exit

time of Z from A. Then TA   8 almost surely and

P r|ZTA
� w| � rs �

logR� log |w|

logR� log r

P r|ZTA
� w| � Rs �

log |w| � log r

logR� log r

Proof: Let w0 � u0 � iv0, Zt � Xt � iYt and set R2
t � |Zt � w|2 � pXt � u0q

2 � pYt � v0q
2.

Then Itô’s formula shows that

dR2
t � 2pXt � u0qdXt � 2pYt � v0qdYt � 2dt

� 2RtdBt� 2dt

where

dBt �
1

Rt
ppXt � u0qdXt � pYt � y0qdYtq .

Hence Bt is a local martingale and

xB,Byt �

» t
0

1

R2
s

�
pXt � u0q

2 � pYt � v0q
2
�
ds � t

so by Theorem 2.3.3 B is a (real) Brownian motion. A further application of Itô’s formula gives

d logR2
t �

2

Rt
dBt

and hence

log |Zt � w| � log |w| �

» t
0

dBt
|Zs � Z0|

is a local martingale. Further, by definition of TA, log |Zt^TA
�w| is a bounded local martingale

and thus a martingale by Lemma 1.4.2. By the Optional Stopping Theorem,

log |w| � E rlog |ZTA
� w|s

� P r|ZTA
� Z0| � rs log r � P r|ZTA

� w| � Rs logR.

Further, since TA   8 we have

P r|ZTA
� w| � rs � P r|ZTA

� w| � Rs � 1.

We thus have a pair of linear equations which, when solved, complete the proof. �

Lemma 2.4.3 Let Z be a complex Brownian motion with Z0 � 0 P C. Then for every w P C
and ε ¡ 0,

P rDt ¡ 0, Zt P Bpw, εqs � 1.

Proof: It w � z0 then we are done. If not, by Lemma 2.4.2 we have

P rDt, Zt P Bpw, εqs ¥
logR� log |w|

logR� log r
.

Letting RÑ8, we have the stated result. �
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Theorem 2.4.4 Let Z be a complex Brownian motion with Z0 � z0 P C. Then the closure of

the range of Z is almost surely equal to C.

Proof: Let pdnq be a countable dense sequence in C. Then by Lemma 2.4.3,

P r@n,m P N, Dt, Zt P Bpdn, 1{mqs � 1.

For any z P C there exists a subsequence pdrnq of pdnq such that drn Ñ z, and since for all n

there exists tn such that Ztn P Bpdrn , 1{nq we have Ztn Ñ z. �

2.5 Conformal Invariance

In view of Lemma 2.3.5 it is natural to ask whether fpZtq is a Brownian motion for a wider

class of functions f than just rotations. In fact, seeing Lemmas 2.3.4 and 2.3.7 together with

Itô’s formula should suggest that the natural situation in which to ask this question is when we

further permit the process fpZtq to be time changed. We thus arrive at the conformal invariance

of complex Brownian motion.

Theorem 2.5.1 (Lévy) Let f be a non-constant entire function and let Z be a conformal local

martingale. Suppose that xZ, Z̄y� is strictly increasing. Then there exists a strictly increasing

time change τ such that fpZτp�qq is a complex Brownian motion.

Remark 2.5.2 In particular, entire functions preserve precisely the irregular nature in which

Brownian paths oscillate.

Proof: By Itô’s formula (in particular, Corollary 2.2.10) fpZtq is a continuous conformal local

martingale and

xfpZ�q, �fpZ�qyt � » t
0
|f 1pZsq|

2ds. (2.12)

The stated result then follows from Lemma 2.3.7 providing we can show that (2.12) is strictly

increasing and tends to infinity as tÑ8.

To see that (2.12) is strictly increasing, note f 1 is an entire function that is not identically

zero and hence (by the identity theorem) the set of zeros of f 1 cannot have a limit point. Since

any uncountable subset of C has a limit point, f 1 can have at most countably many zeros. For

any z0 P C such that f 1pz0q � 0 and any s   t,

E
�» t

s
1tZu � z0udu

�
�

» t
s
P rZu � z0s du � 0.

Hence, almost surely, for almost all u P ps, tq we have f 1pZuq � 0 and hence
³t
s |f

1pZuq|
2du ¡ 0.

It follows that (2.12) is strictly increasing in t.

It remains to show convergence to infinity. Since f is non-constant, there exists an open ball

Bpw, δq and some ε ¡ 0 such that |f 1pzq| ¥ ε for all B P Bpw, δq. Let B be a complex Brownian

motion. By continuity of B there exists κ ¡ 0 such that

Pw

�
sup
sPr0,κs

|Bs � w|   δ{3

�
¡ 0. (2.13)
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We construct a sequence pTnq of stopping times according to the following procedure: Time

T1 occurs when Z first enters Bpw, δ{3q. We then wait until time T1 � κ. Then, T2 occurs at

the next time at which Z enters Bpw, δ{3q. We repeat this procedure ad infinitum to define Tn
for all n. Note that Theorem 2.4.4 and the strong Markov property imply that Tn   8 for all

n. Further, by the strong Markov property the events

An � tZs P BpZTn
, δ{3q for all s P rTn, Tn � κqu

are mutually independent. By (2.13) the probability of such events occur is bounded away from

zero, so (by Borel-Cantelli) almost surely infinitely many An occur. Since, on each such n,

BpZTn
, δ{3q � Bpw, δq, we have » Tn�κ

Tn

|f 1pZsq|
2ds ¥ κε2

for infinitely many n. It follows that (2.12) tends to 8 as tÑ8. �

In Theorem 2.4.4 we showed that the path of complex Brownian motion was almost surely

dense in the complex plane. In contrast, with Theorem 2.5.1 we can show that the region of the

complex plane that the path actually covers is rather small.

Lemma 2.5.3 Let Zt be a complex Brownian motion with Z0 � z0 P C and let w � z0. Then

P rDt, Zt � ws � 0.

Proof: Suppose first that Z0 � 0. Since z ÞÑ ez is analytic, by Theorem 2.5.1 there is a time

change τ such that Wt � exppfpZτptqqq is a complex Brownian motion. However, z ÞÑ ez omits

zero (we proved this in Lemma 3.1.3) so P rDt,Wt � 0s � 0. Since W0 � 1 we have proved the

result for the case z0 � 1 and w � 0.

For arbitrary z0 � w, the full result can be deduced by applying a Moebius transformation

f to W , such that fp1q � z0, fp0q � w and fp8q � 8. Then f is analytic and there is a time

change τ 1 such that W 1
t � fpWτ 1ptqq is a Brownian motion, but of course W 1 never hits w. �

Lemma 2.5.4 Let Z be a complex Brownian motion with Z0 � 0. Then tz ; Dt, Zt � zu is

almost surely a Lebesgue-null subset of C.

Proof: Let A � tz ; Dt, Zt � zu. Then, using Fubini’s Theorem,

E
�»

C
1tz P Audz

�
�

»
C
P rDt, Zt � z Ps dz � 0

by Lemma 2.5.3, and since 1tz P Au ¥ 0 we conclude that P
�³

C 1tz P Audz � 0
�
� 1. �

Null subsets are rarely boring, especially when they occur naturally and this case is no

exception. It is beyond the scope of this course (and requires different tools) but in fact the

range of planar Brownian motion is a fractal with Hausdorff dimension 2. Therefore, Lemma

2.5.4 shows that even once we have the right dimension the corresponding Hausdorff measure is

zero.

An even more sensitive tool than the usual Hausdorff measure is required to properly identify

the fractal nature of complex Brownian paths. To be precise, for planar Brownian motion we

must use generalized Hausdorff measure with gauge function

φptq � t2 log log t
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and this defines a measure under which finite time intervals of Brownian paths have finite non-

zero area1

1If this means nothing to you, using φptq � t2 as the gauge function gives 2 dimensional Hausdorff measure; the exponent
corresponds to change in measure when length is scaled.
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Chapter 3

Winding and Tangling

Recall that the function f is said to omit the point z if z is not an element of the range of f . The

final result of this chapter (and of this course) will be Picard’s (Little) Theorem; a non-constant

entire function may omit at most a single point from its range.

This is a course about probability and we will give a probabilistic proof Picard’s Theorem. In

particular, we will prove Picard’s Theorem using the winding and tangling of Brownian paths.

That said, the statement of Picard’s Theorem belongs firmly in the realm of complex analysis;

before we embark on the road towards its proof let us view the statement of Picard’s Theorem

in its proper light.

3.1 Picard’s Theorem in Complex Analysis

The branch of complex analysis that is concerned with studying the range of entire functions

is known as Nevanlinna theory. The ‘first theorem’ in Nevanlinna theory is the following well

known result.

Theorem 3.1.1 (Louville) Let f be an entire function and suppose f is bounded. Then f is

constant.

Louville’s Theorem, which is usually proved using Taylor’s Theorem, is in fact a much weak-

ened version of Picard’s Theorem; it says that if an entire function omits tz P C ; |z| ¥Mu from

its range then f must be constant.

A result which will not be of direct use to us but which is of interest to us, is the complex

version of the fundamental theorem of algebra:

Theorem 3.1.2 Let P pzq �
°n
i�0 z

iai be a complex polynomial. Then, for each w P C the

equation P pzq � w has precisely n solutions in C (counted by multiplicity).

The connection to Picard’s Theorem should be clear: polynomials are perhaps the most

prominent examples of entire functions and an immediate corrolary of the above result is that

polynomials do not omit any values.

In fact, more is true. A deeper result, which generalizes both Theorem 3.1.2 and Picard’s

theorem (and is not part of this course!), shows that an entire function might omit a single value

but, amongst the values that it does take, each value is taken essentially the same number of

times.
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In view of Theorem 3.1.2, one might wonder how easy it is to give an example of an entire

function that really does omit some point.

Lemma 3.1.3 The function fpzq � ez is entire and omits 0.

Proof: Recall that ez �
°8
n�0

zn

n! . It is a theorem that a complex power series defines an

analytic function within its radius of convergence, so f is entire. From the power series it is

trivial to see that ez�w � ezew for all z, w P C. To finish, if w P C and ew � 0 then we have

1 � e0 � e�wew � 0, which is a contradiction. �

3.2 Winding

In this section we will collect together some definitions and theorems from complex analysis that

make precise the concept of a curve winding around a point.

Definition 3.2.1 A connected open subset of C is called a domain.

Definition 3.2.2 Let D be a domain. For a, b P R with a   b, a continuous function γ :

ra, bs Ñ D is known as a path in D. The path γ is said to be closed if γpaq � γpbq and simple

if γpsq � γptq for all a   s   t   b.

A continuously differentiable path is known as a curve. A closed curve γ is said to be

contractible in a domain D if γ can be continuously deformed within D to a constant path.

We use the notation γptq and γt interchangeably.

Example 3.2.3 Let γptq � eit for t P r0, 2πs. Then γ is a simple closed curve that is contractible

in C, but not contractible in Czt0u. Further, γ1 � γ|r0,πs is a simple curve that is contractible

in C and in Czt0u, but is not closed.

If a path γ : ra, bs Ñ C does not pass through z0 P C then we can define a function

θ : ra, bs Ñ R by

γptq � z0 � |γptq � z0|e
iθptq,

with the additional requirement that θ is continuous. The function θ is said to be a continuous

choice of the argument of γ about z0. Note that many such choices of θ are possible; just add

integer multiples of 2π.

For a ¤ s   t ¤ b, the quantity θptq � θpsq measure the angle (relative to z0, cumulatively

and in the anticlockwise direction) through which γ turns during rs, ts.

Definition 3.2.4 If γ : ra, bs Ñ C is a path and θ is a continuous choice of its argument about

z0 then we say
θpbq � θpaq

2π

is the winding number of γ about z0.

Remark 3.2.5 Definition 3.2.4 did not require that γ to be a curve (i.e. differentiable). It is

straightforward to show that the winding number does not depend on the particular continuous

choice of argument used.
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We will write the complex path integral of the function f : D Ñ C along the curve γ :

ra, bs Ñ D as»
γ
fpγqdγ �

» b
a
fpγptqqγ1ptqdt �

» b
a
<
�
fpγptqq

�
γ1ptqdt� i

» b
a
=
�
fpγptqq

�
γ1ptqdt,

where the real numbers <pwq and =pwq respectively denote the real and imaginary part of w P C.

We are now in a position to recall what is probably the most famous result in complex analysis.

Theorem 3.2.6 (Cauchy) Let D be a domain and let γ be a simple closed curve in D that is

contractible in D. Let f be analytic in D. Then»
γ
fpγqdγ � 0.

Let γ : r0, ts Ñ C be a curve such that γ does not pass through w P C. For 0 ¤ s ¤ t we

define

θpsq �

» s
0

1

γ � w
dγ. (3.1)

Lemma 3.2.7 For all s, =θ is a continuous choice of the argument of γ about w.

Proof: We write γpsq � w � rpsqeiφpsq, for real functions r and φ. Note that continuity of γ

implies continuity of both r and φ. Then

dγpsq � eiφpsqdrpsq � irpsqeiφpsqdφpsq

by the product rule. Hence,

1

γpsq � w
dγpsq �

1

rpsq
drpsq � i dφpsq,

which implies that » s
0

1

γpuq � w
dγpuq �

» s
0

1

rpuq
drpuq � ipφpsq � φp0qq. (3.2)

Hence =θpsq � φpsq � φp0q, which completes the proof. �

Lemma 3.2.8 A closed path γ in Czt0u is contractible in Czt0u if and only if the winding

number of γ about 0 is 0.

Proof:

�

3.3 Winding of Brownian Paths

We have already seen that windings numbers of curves can be expressed as complex path inte-

grals, but the expression (3.1) does not make sense if γ is not a curve. We are already concious

that Brownian paths are far from being curves; they fail to be differentiable and, worse still, do

not have finite variation. Consequently, we must seek an alternative for (3.1) through the Itô

integral.
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Lemma 3.3.1 Suppose that Zt is a complex Brownian motion with Z0 � z0 � 0 and define

Θt �

» t
0

1

Zs
dZs.

Then =Θt is a continuous choice of the argument about 0 of the path of Z over r0, ts.

Proof: By Itô’s formula (in particular, Corollaries 2.2.10 and 2.2.11),

dpZt expp�Θtqq � expp�ΘtqdZt � Ztdpexpp�Θtqq

� expp�ΘtqdZt � Zt expp�ΘtqdΘt

� expp�ΘtqdZt � Zt expp�Θtq
1

Zt
dZt

� 0.

To be precise, in the above calculation we use that P rDt, Zt � 0s � 0, which follows from Lemma

2.5.3, and take the function z ÞÑ 1
z to have domain D � Czt0u. Hence Zt � Z0 exppΘtq �

Z0 expp<Θtq expp=Θtq and the result follows. �

The proof of the above lemma reveals an important technique that has been waiting for us

since Corollary 2.2.10. The Itô calculus of conformal local martingales and analytic functions

follows essentially the same rules as the deterministic calculus of real valued smooth functions.

Consequently, the paths of conformal local martingales, despite being decidedly rough (see

Remark 2.2.4), sometimes behave in much the same way as their differentiable relatives.

Theorem 3.3.2 Let Zt be a complex Brownian motion with Z0 � z0 � 0 and let Mt be the

winding number of the path of Z during r0, ts about 0. Then there exists an increasing sequence

pTnq of times such that MTn
� 0 and Tn Ñ8 almost surely as N Ñ8.

Proof: By Lemma 3.3.1 the process

Mt � =
�» t

0

1

Zs
dZs



is both a continuous choice of the argument about 0 of Z and a (real) continuous local martingale.

Further, without loss of generality (or consider e�=Z0Z and apply Lemma 2.3.5) we can assume

z0 P R so as 1
2πMt is the winding number about 0 of the path Z during r0, ts. Further,

xMyt �

» t
0

1

|Zs|2
ds

and (a one dimensional version of) the argument used in the proof of Theorem 2.5.1 shows that

xMyt Ñ 8 as tÑ 8. Hence, by Corollary 2.3.9, there is a time change τ such that Wt �Mτpt

is a real Brownian motion. Further, since 1
|Zs|2

¡ 0, xMy is strictly increasing and hence τ is

strictly increasing. Of course, there is an increasing sequence of times pSnq such that Sn Ñ 8

such that WSn
� 0. Setting Tn � τ�1pSnq completes the proof. �

3.4 Tangling of Brownian Paths

In fact, in order to prove Picard’s Theorem it is not winding that is required, but tangling.

Tangling is much the same as winding except that more points are involved.
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Definition 3.4.1 Let D � C. A closed path γ � D is said to be tangled in D if γ is not

contractible in D.

From hereon, if Z is a complex Brownian motion, let Z�
t denote the path of Z during time

r0, ts, concatenated with a single line segment joining Zt to Z0, thus making Z�
t a closed path

in C.

The result we need, in contrast to Theorem 3.3.2, is the following. The proof constitutes the

remainder of this section.

Theorem 3.4.2 (Itô, McKean) Let Z be a complex Brownian motion and suppose Z0 � 0.

Then there exists a random time η   8 such that for all s ¥ η, if Zs P p�1, 1q then Z�
s is tangled

in Czt�1, 1u.

In words, complex Brownian motion eventually becomes tangled in Czt�1, 1u. Because of

Theorem 3.3.2, we know that one which of 0 and 1 it winds around must change infinitely

many times as t Ñ 8. Consequently, Theorem 3.4.2 is a sensitive result and its proof, which

constitutes the rest of this section, requires a significant amount of care.

Remark 3.4.3 The original proof of Theorem 3.4.2 was given by Itô and McKean. Their

argument, which uses Modular functions, appears in McKean (1969). The proof gives below is

adapted from an argument due to Doob that appeared in Davis (1979).

We will need to introduce a significant amount of notation in the following proof, since it

involves a somewhat complicated encoding of planar paths. Such notation will only be used

within this section.

Let G be the free group with two generators a and b. We denote the inverse of c P G by c�1.

Let A � ta, b, a�1, b�1u and let W be set of words (i.e. finite ordered sets) with letters in A,

including the empty word. We write ξζ to denote the concatenation of the words ξ and ζ. Then

length of the word w, denoted by |w|, is the number of letters (including repeats) that make up

w.

Definition 3.4.4 For ξ, ζ P W and c P A, a word which has the form ξζ is said to be a

cancellation of ξcc�1ζ. We say the word w is a simplification of w1 is there is a sequence of

successive cancellations of w1 that results in w.

For two words w1 and w2, we write w1 � w2 to mean that w1 and w2 have a common

simplification. A word that has no simplifications is called a reduced word.

Lemma 3.4.5 The relation � is an equivalence relation on W . For each equivalence class C

there is a unique c P C such that |c| ¤ |d| for all d P C. Each such c is a reduced word and as

such is an element of G.

Proof: We omit the proof and leave it as an exercise. �

We now set up a correspondence between paths in Czt�1, 1u and words in W . Consequently,

we achieve a map between paths in Czt�1, 1u and reduced words. To this end, let K � Czt�1, 1u

and write

J0 � p�8,�1q

J1 � p�1, 1q

J2 � p1,8q
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and note that K � J0 Y J1 Y J2. Let H� � tz P C ; =z ¡ 0u denote the open upper half plane

and let H� � tz P C ; =z   �u denote the open lower half plane.

Let γ be a complex path in Czt�1, 1u started at some point z R R. Let T0 � inftt ¡ 0 ; Zt P

Ru be the first time at which γ enters K. Then, by continuity of γ we have γpT0q P K, so as

γpT0q is an element of precisely one of J0, J1 and J2. We then define pTkqkPN recursively. If

γpTkq is in section j at Tk then Tk�1 is the next time at which γptq hits KzJj .

To each passage during time rTk�1, Tks, we associate a triplet of information. The j such

that γpTk�1q P Jj is known as the source and the j1 such that γpTkq P Jj1 is knows as the sink.

The triplet is pj, j1, �q where � P t�,�u is defined as follows.

If there is some ε ¡ 0 such that γptq P H� for all t P rTk�1 � ε, Tkq then we say γ hits Jj1

from above at Tk. If no such ε exists then there is some ε ¡ 0 such that γptq P H� for all

t P rTk � ε, Tkq, in which case we say γ hits Jj1 from below at Tk. If the passage is from above

then � is � and if the passage is from below then � is �.

Therefore, each finite path γ in Czt0, 1u maps to a finite sequence of triplets of information.

Let us write pIγk ,O
γ
k , �

γ
kq
K
k�1 for this sequence. We map this sequence onto a second sequence of

words, which we write as pWγ
k q
K
1 where Wγ

k is defined as follows:

pIγk ,O
γ
k , �

γ
kq Wγ

k

p0, 1,�q a

p0, 1,�q a�1

p1, 0,�q a�1

p1, 0,�q a

p1, 2,�q b

p1, 2,�q b�1

p2, 1,�q b�1

p2, 1,�q b

p0, 2,�q ab

p0, 2,�q b�1a�1

p2, 0,�q b�1a�1

p2, 0,�q ab

We define W pγq �Wγ
KW

γ
K�1 . . .W

γ
1 to be the concatenation from the left of the words in pWγ

k q.

Using Lemma 3.4.5, we define G pγq to be the unique reduced word in the same � equivalent

class as W pγq.

Remark 3.4.6 The free group G is associative but not commutative.

Despite the slew of terminology we are still well on the beaten track. Fix t ¡ 0 and let P be

the set of closed paths κ : r0, ts Ñ Czt0, 1u such that κp0q P K. The following theorem, which

we will not prove, is a standard result from algebraic topology.

Theorem 3.4.7 The map γ ÞÑ G pγq is a continuous function from P (equipped with the uni-

form topology) to the free group with generators a2 and b2.

Further, paths γ1, γ2 P P can be continuously deformed through Czt�1, 1u to each other if

and only if G pγ1q � G pγ2q.

Exercise 3.4.8 The reader should draw some tangled γ of their own and calculate G pγq.
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As a consequence, the above theorem says that continuous deformation of γ through Czt�1, 1u

does not change G pγq.

Corollary 3.4.9 A closed path γ P P is not tangled in Czt0, 1u if and only if G pγq is the empty

word.

Proof: This follows immediately from Theorem 3.4.7 and Corollary 3.2.8. �

In view of Corollary 3.4.9, to prove Theorem 3.4.2 we must show that, with probability one,

there is some time η   8 such that G pZ�
s q is non-empty whenever Zs P p�1, 1q.

Let ε P p0, 1q. Without loss of generality (by Lemma 2.5.3) assume that Zt never visits �1

or 1. Let pSnq be the sequence of stopping times such that S0 � 0 and

Sn�1 � inftt ¥ Sn ; G pZ�
t q � G pZ�

Sn
q and Zt P p�1, 1qu.

Remark 3.4.10 Note that G pZ�
t q is not defined if Zt P p�8, 1q Y p1,8q because then G pZ�

t q is

not contained within Czt�1, 1u.

By Theorem 3.4.7, for each n we can write G pZ�
Sn
q uniquely as

G pZ�
Sn
q � g

jlpnq
lpnq . . . g

j2
2 g

j1
1 (3.3)

where gi P ta
2, b2u are group elements, ji P t1,�1u are groups actions (so as gj1i � pgiq

ji) and

lpnq P NY t0u (lpnq � 0 corresponds to the empty word). By definition of our system of coding

paths, we have that for all n,

|lpnq � lpn� 1q| � 1. (3.4)

In words, during time rSn, Sn�1s, the path of Z makes precisely one more or one less turn around

either �1 or 1. The crucial point for us is to show that, more often than not, this causes the

path to become more tangled rather than less. One of precisely four things can happen during

rSn, Sn�1s:

Z winds clockwise about �1 add a2 to W pZ�q.

Z winds anti-clockwise about �1 add a�2 to W pZ�q.

Z winds clockwise about 1 add b2 to W pZ�q.

Z winds anti-clockwise about 1 add b�2 to W pZ�q.

Using the notation of (3.3) for G pZ�
Sn
q, we would have lpn� 1q � lpnq � 1 if and only if the

turn that occurs during rSn, Sn�1s undoes the turn corresponding to g
jlpnq
lpnq (i.e. inverts the group

element). Note, by the strong Markov property of Z, that n ÞÑ G pZ�
Sn
q is Markov with respect

to the filtration Fn � σpZt ; t ¤ Snq, but the probabilities of the next transition depend on the

position of ZSn
.

Consider the transition rSn, Sn�1s and write g
jlpnq
lpnq � g. By Problem 4 on Sheet 3 (i.e. sym-

metry) and the strong Markov property, the chance of the transition during rSn, Sn�1s corre-

sponding to g�1 is the same as the probability that it corresponds to g. It follows that:

(:1) On each transition rSn, Sn�1s, the probability of lpn� 1q � lpnq � 1 is at most 1{2.

The transition rSn, Sn�1s is said to be special if ZSn
P p�1

2 ,
1
2q. In this case, Question 4 on

Problem Sheet 3, along with the strong Markov property, implies that each of the four possible
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transitions which could occur happens with probability bounded away from 0 (see picture!).

This has two important consequences; firstly infinitely many transitions occur and secondly,

since (by the above paragraph) these four transitions fall into two pairs and within each pair

each transition occurs equally likely. Therefore, for some δ ¡ 0,

p:2q On a special transition rSn, Sn�1s, the probability that lpn�1q � lpnq�1 is at most 1{2�δ.

By Problem 5 on Sheet 5 and the strong Markov property, infinitely many special transitions

occur. From this and p:1q, p:2q, it follows immediately (by standard results concerning integer

valued random walks) that lpnq Ñ 8 almost surely as n Ñ 8. This says precisely that the

length of G pZ�
Sn
q tends to infinity almost surely. For any t such that Zt P p�ε, εq, if nptq �

supts ¤ t ; s � Snu then we have G pZ�
Snptq

q � G pZ�
Sn
q. By Corollary 3.4.9, Z�

t is only untangled

if G pZ�
Snptq

q is the empty word, which proves Theorem 3.4.2.

3.5 Picard’s Theorem

We are now ready for the final step of course.

Theorem 3.5.1 (Picard) Let f : C Ñ C be an entire function such that fp0q � 0. Then the

range of f cannot omit both �1 and 1.

Proof: Without loss of generality we can and will assume that fp0q � 0 and f omits both

�1 and 1. (Else, let g be the (unique) Moebius transformation such that gpfp0qq � 0, gpaq �

�1, gpbq � 1 and consider g � f .)

For the last time, let Z be a complex Brownian motion with Z0 � 0. By Theorem 2.5.1 there

is a time change τ such that Wt � fpZτptqq is a complex Brownian motion. Let W �
t denote the

path of W over r0, ts, followed by the line segment rWt, 0s to make a closed path. By Theorem

3.4.2 there is some η   8 such that W �
t is tangled in Czt�1, 1u for all t ¥ η. By Problem 5 on

Sheet 5 there is some random time T such that η ¤ T   8 and Wt P p�1, 1q.

Then path Z�
T is contractible in C (as indeed is any path) but its image W �

T under the

continuous function f is not contractible in fpCq � Czt�1, 1u. This is a contradiction. �
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